

Compiled By Kendrick.Burson@cPrime.com

Aligning Projects, Enhancing Teams.

Encyclopedia

of Agile

An Indexed glossary of terms used in
Agile Software Development

Compiled By Kendrick.Burson@cPrime.com

The intention of compiling this Encyclopedia of Agile was to create a document that can be used
both as an offline reference, and as an online linked reference to some of the top thought leaders
in the software industry.
The terms and definitions found in this encyclopedia are public domain. The wording of the
definitions were taken from the following sources, with reference links to these sources for more in
depth coverage of the terminology definitions and etymology.
While the content is not new, or original, I hope that you find the various indexes and references
helpful in your search for understanding of all things Agile.

http://www.wikipedia.org/

Agile Glossary

 Agile Glossary

 Agile Glossary

Agile
Glossary

Scrum.org

ScrumAlliance

Scrum Terminology Index

www.cprime.com i

Scrum Roles
 ScrumMaster
 Certified ScrumMaster
 Product Owner
 Team
 Delivery Team
 Cross-Functional Team

Scrum Activities
 Planning
 Release Planning
 Sprint Planning
 Backlog Grooming
 Sprint
 a.k.a Iteration
 Daily Scrum
 a.k.a. Daily Standup
 Sprint Review
 a.k.a Demo
 Retrospective
 a.k.a Kaizen

Scrum Artifacts
 Backlog
 Product Backlog
 Sprint Backlog
 Burndown Chart
 Burnup Chart
 Action Items
 Parking Lot
 Product Vision Statement
 Team Agreements
 Definition of Done
 Working Agreements

Types Of Stories
 User
 Technical
 Defect
 Spike
 Tracer Bullet
 Research

Agile Terminology Index

www.cprime.com ii

A 2
Acceptance Testing 2
* Adaptive 2
* Affinity Estimating 2
* Agile 2
Agile Development Practices 2
Agile Estimation 2
Agile Manifesto 2
Agile Methods 2
Agile Methodology 2
Agile Modeling 2
Agile Planning Basics 2
Agile Project Management 2
Agile Software Development 2
* Agile Unified Process 2
* Agilista 2
* Agility 2
Alignment 2
ALM 2
* Anchoring 2
Application Lifecycle Management 2

B 2
Backlog 2
Backlog Item 2
Backlog Item Effort 2
Backlog Grooming 2
Big Ball of Mud 2
Big Visible Charts 2
* Blocked 2
Bottleneck 2
Branching 2
Breaking the Build 2
Build Process 2
Burn-Down Chart 2
Burn-Up Chart 2
Business Alignment 2
Business Value 2

C 2
Capacity 2
CANI 2

* Card-Conversation-Confirmation 2
Certified ScrumMaster 2
Chicken 2
Code Smell 2
Colocation 2
Continuous Integration 2
Cross-Functional Team 2
* Crystal 2
Customer 2

D 2
Daily Scrum 2
Daily Standup 2
Defect 2
Definition of Done 2
Delivery Team 2
* Dependency Injection Principle 2
Design Pattern 2
Distributed Development Team 2
Distributed Scrum 2
Domain Model 2
DSDM 2
* Dynamic Systems Development
Method 2

E 2
* Earned Value Chart 2
Emergence 2
Empiricism 2
Epic 2
EssUP 2
* Essential Unified Process: 2
Estimation 2
* Estimate to Complete Chart 2
Extreme Programming 2

F 2
Fail-Fast 2
Feature 2
FDD 2
* Feature Driven Development 2
Fibonacci Sequence 2
Flow 2

Agile Terminology Index

www.cprime.com iii

* Forked Development 3
Fog Of War 3
* Functional Test 3

G 3

H 3
* Ha 3

I 3
Impediment 3
INVEST 3
* Integration Test 3
Inspect and Adapt 3
* Interface Segregation Principle 3
* Iron Triangle 3
IT Alignment 3
Iteration 3

J 3

K 3
Kanban 3
* Kata 3
* Kaizen 3

L 3
Lean Software Development 3
Levels of Planning, 5 3
* Liskov Substitution Principle 3
* Load Test 3

M 3
Minimum Marketable Features 3

N 3

O 3
OpenUP 3
* Open Unified Process 3
* Open Closed Principle 3
* Osmotic Communication 3

P 3
Pair Programming 3
Parallel Development 3
* Pareto Principle 3
* Parking Lot 3
Pattern 3
Performance Test 3
Pig 3
Planning 3
Planning Game 3
Planning Poker 3
* Pragmatic Programming 3
* Predictive 3
* Prioritization 3
* Process Framework 3
Product 3
Product Backlog 3
* Product Backlog Item 3
Product Owner 3
* Product Roadmap 3
Product Vision 3
* Productivity 3
* Profiling 3

Q 3

R 3
* Reactive 3
Refactoring 3
Release (Software) 3
Release Backlog 3

TBD 3
Release Management 3

TBD 3
Release Plan 3
Release Planning 3
Research Story 3

TBD 3
Resources 3

TBD 3

Agile Terminology Index

www.cprime.com iv

Retrospective 4
* Ri 4
* ROI 4
* Ron Dori 4

S 4
* Schedule 4
* Scope 4
Scrum 4
ScrumBut 4
ScrummerFall 4
ScrumPlus 4
Scrum Team 4
ScrumMaster 4
Scrum Snowman 4
Self-Organization 4
* Shu 4
* Shu-Ha-Ri 4
* Sidebar 4
* Single Responsibility Principle 4
Software Quality Metrics 4
* SOLID OOD Principles 4
Spike 4
Sprint 4
Sprint Backlog 4
Sprint Burn-Down Chart 4
Sprint Planning Meeting 4
Sprint Review 4
Stakeholder 4
Standup Meeting 4
Story 4
Story Points 4
* Stress Test 4
* Swarming 4

T 4
Task 4
Task Board 4
* Task Breakdown 4
Team 4
Technical Debt 4
* Technical Story 4
Test Automation 4

Test-Driven Development 4
Time-box 4
* Tracer Bullet 4
* Transparency 4
* Tuckman Model 4

U 4
Unit Testing 4
User Story 4

V 4
Velocity 4
* Velocity Tracking 4
Vision 4
Voice of the Customer (VOC) 4

W 4
Wiki 4
* WIP 4
* Work Breakdown Structure 4
Work in Progress (WIP) 4

X 4
XP 4

Y 4
* YAGNI 4
* YAGRI 4

Z 4

Reference Articles and Papers 4

Agile Architectures

Agile Architecture 4
by Chris Sterling @ SolutionsIQ, CST
by Mickey Phoenix @ SolutionsIQ, CSM

Distributed Scrum

Successful Distributed Agile Team Working
Patterns 4
by Monica Yap @ SolutionsIQ, CSM

Agile Terminology Index

www.cprime.com v

Case Study: Implementing Distributed
Extreme Programming 5
by Monica Yap @ SolutionsIQ, CSM

Daily Scrums in a Distributed World 5
by Kevin Thompson @ cPrime.com, CSM,
CSP, PMP, PhD

Meta-Scrum

Establishing and Maintaining Top to
Bottom Transparency Using Meta-
Scrum 5
by Brent Barton @ SolutionsIQ, CST

Agile Adoption

Introduction to Scrum 5
by Kevin Thompson @ cPrime.com, CSM,
CSP, PMP, PhD

Scrum as Project Management 5
by Kevin Thompson @ cPrime.com, CSM,
CSP, PMP, PhD

The Agile Story: Scrum Meets PMP 5
by Crystal Lee @ cPrime, PMP, CSM

When to Use Scrum 5
by Kevin Thompson @ cPrime.com, CSM,
CSP, PMP, PhD

Agile Top-Down: Striking a Balance 5
by Bryan Stallings @ SolutionsIQ, CST

Agile ROI Part I: The Business Case for
Agility 5
by John Rudd @ SolutionsIQ

Agile ROI Part II: The Business Case for
Agility 5
by David Wylie @ SolutionsIQ

Scrum in the Enterprise 5
by Kevin Thompson @ cPrime.com, CSM,
CSP, PMP, PhD

How Uncertainty Works 5
by Kevin Thompson @ cPrime.com, CSM,
CSP, PMP, PhD

The Price of Uncertainty 5
by Kevin Thompson @ cPrime.com, CSM,
CSP, PMP, PhD

How Agile should your Project be? 5
by Kevin Thompson @ cPrime.com, CSM,
CSP, PMP, PhD

Integrating Waterfall and Agile
Development 5
by Shayan Alam @ cPrime.com, PMP

Rational Unified Process Best Practices 5
by Crystal Lee @ cPrime.com, PMP,

Effective Retrospectives 5
by Kendrick Burson @ cPrime.com, CSM,
CSPO

Transitioning From Time-Based to Relative
Estimation 5
by Ilan Goldstein @ ScrumAlliance.org, CSM,
CSPO, CSP

5 Common Mistakes We Make Writing User
Stories 5
by Krystian Kaczor @ ScrumAlliance; CSM,
CSP

Agile Project Dashboards 5
Bringing value to stakeholders and top
management
by Leopoldo Simini @ ScrumAlliance; CSM,
CSP

Daily Stand-up, Beyond Mechanics: A
Measure of Self-Organization 5
by Bachan Anand CSM, CSPO, CSP

Affinity Estimation for Release Planning 5
by Monica Yap @ SolutionsIQ

Managing Risk in Scrum, Part 1 5
by Valerie Morris @ SolutionsIQ

Product Owner Anti-Patterns 5
by Monica Yap @ SolutionsIQ

Card-Conversation-Confirmation 5
by Ron Jeffries, 2001

Agile Terminology Index

www.cprime.com vi

Recognizeing Bottlenecks in Scrum 6
by Dhaval Panchal @ SolutionsIQ, CST

If At First You Don't Succeed, Fail, Fail
Again 6
by Michael Tardiff @ SolutionsIQ, CSM, CSPO

What is the Definition of Done (DoD) in
Agile? 6
by Dhaval Panchal @ SolutionsIQ, CST

How Should We Deal With the Mess That
Scrum Exposes? 6
by Monica Yap @ SolutionsIQ, CSM, CSPO

The Afternoon ScrumMaster: Keeping Agile
Teams on Track 6
by Dhaval Panchal @ SolutionsIQ

The Short Short Story 6
by Paul Dupuy @ ScrumAlliance; CSM

Is Sustainable Pace Nice to Have? Think
Again! 6
by Manoj Vadakkan CSM, CSP

Agile User Interface Design and Information
Architecture From the Trenches 6
by Robin Dymond @ ScrumAlliance; CSM,
CSP, CST

Why Agile Does Matter in an Embedded
Development Environment 6
by Bent Myllerup @ ScrumAlliance; CSM,
CSPO, CSP, CSC

The Illusion of Precision 6
by Jim Schiel @ ScrumAlliance; CSM, CSP,
CST

Specialization and Generalization in Teams6
by Bas Vodde @ ScrumAlliance; CSM, CSPO,
CSP, CST

The Importance of Self-Organisation 6
by Geoff Watts @ ScrumAlliance; CSM, CSP,
CSC, CST

Manager 2.0: The Role of the Manager in
Scrum 6
by Pete Deemer @ ScrumAlliance; CSM, CSP,
CST

Encyclopedia of Agile Terminology

www.cprime.com 1

A
Acceptance Testing

Formal testing conducted to determine whether or not a system satisfies its acceptance criteria
and to enable the customer to determine whether or not to accept the system.
Reference: Wikipedia

Return To Glossary

* Adaptive
Return To Glossary

* Affinity Estimating

Affinity Estimating is a process to quickly estimate a large number of stories with high level
SWAG estimates relative to other stories in the same project. To popular tactics are to
estimate using either relative or absolute points.
Estimating with absolute units:

When estimating with absolute units the facilitator will quickly review several stories, asking the
team for a flash vote on size (1,2,3,5,8,13,Epic). each new story is compared to the previously
voted stories for equivalent size. Each vote is a flash vote, no more than 60 seconds
discussion. As each story is estimated the story card is dropped onto the specified stack. By
the end of the exercise al stories have been assigned and absolute story point size
Estimating relative units:

When estimating with relative units the delivery team works in parallel, each selecting a stack
of stories and sorting them on a wall, floor or table in relative size, smallest to largest. As the
team members work through their stacks they can reference stories placed by other team
members, possibly moving those stories to a new location in the continuum. After all stories
have been placed and the team has reviewed the relative sorting order of the entire backlog
the continuum is translated to story points by marking equal gradations along the continuum
(1,2,3,5,8,13,Epic). A this point the team can reference the established boundaries and move
stories to one side or the other of a boundary line according to their best judgement. By the
end of the process all stories will be assigned a relative story point size.
See Also: Estimation, Release Planning

Encyclopedia of Agile Terminology

www.cprime.com 2

References: SolutionsIQ

Return To Glossary

* Agile
Return To Glossary

Agile Development Practices
Procedures and techniques used to conduct Agile software development. Although there is no
canonical set of Agile practices, most Agile practitioners adopt some subset
of Scrum and XP practices.
Broadly speaking, any practice or technique that facilitates the values and principles set forth in
the Agile manifesto can be considered an Agile practice.
The most popular agile methodologies include:
• Extreme Programming (XP)
• Scrum
• Crystal,
• Dynamic Systems Development Method (DSDM)
• Lean Development
• Feature Driven Development (FDD).

All Agile methods share a common vision and core values of the Agile Manifesto.
Some other well-known agile software development methods include:
• Agile modeling
• Agile Unified Process (AUP)
• Essential Unified Process (EssUP)
• Open Unified Process (Open UP)
• Velocity Tracking

See Also: Agile Manifesto

References:

Return To Glossary

Agile Estimation
Agile estimation is a process of agreeing on a size measurement for the stories in a product
backlog. Agile estimation is done by the team, usually using Planning Poker.
Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 3

Agile Manifesto
A philosophical foundation for effective software development, the Agile Manifesto was created
by representatives from Extreme Programming, Scrum, DSDM, Adaptive Software
Development, Crystal, Feature-Driven Development, Pragmatic Programming, and others
sympathetic to the need for an alternative to documentation-driven, heavyweight software
development processes. It reads, in its entirety, as follows:
We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:
Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.
Twelve principles underlie the Agile Manifesto, including:

1. Customer satisfaction by rapid delivery of useful software
2. Welcome changing requirements, even late in development
3. Working software is delivered frequently (weeks rather than months)
4. Working software is the principal measure of progress
5. Sustainable development, able to maintain a constant pace
6. Close, daily co-operation between business people and developers
7. Face-to-face conversation is the best form of communication (co-location)
8. Projects are built around motivated individuals, who should be trusted
9. Continuous attention to technical excellence and good design
10. Simplicity
11. Self-organizing teams
12. Regular adaptation to changing circumstances

Some of the manifesto’s authors formed the Agile Alliance, a non-profit organization that
promotes software development according to the manifesto’s principles.
References: Wikipedia, AgileManifesto.org, 12 Agile Principles

Return To Glossary

Agile Methods
See Agile Development Practices

Return To Glossary

Agile Methodology
Agile Methodology is an umbrella term for several iterative and incremental software
development methodologies.
See Agile Development Practices

Encyclopedia of Agile Terminology

www.cprime.com 4

Return To Glossary

Agile Modeling
Agile Modeling is a practice-based methodology for Modeling and documentation of software-
based systems. It
is intended to be a collection of values, principles, and practices for Modeling software that can
be applied on a software development project in a more flexible manner than traditional
Modeling methods.
Return To Glossary

Agile Planning Basics
The four basics of Agile planning are: Product Backlog, Estimates, Priorities and Velocity.
• Estimates answer the question: “How long will it take or how many can we do by a given

date?”
• Priorities answer the question: “Which capabilities are most important?
• The Product Backlog answers the question: “What capabilities are needs for financial

success?”
• Velocity answers the question: “How much can the team complete in a Sprint?”

Return To Glossary

Agile Project Management
The style of project management used to support Agile software development. Scrum is the
most widely used Agile project management practice. XP practices also include practices that
support Agile project management. Essential feature of Agile project management include:

• Iterative development cycles
• Self-organizing teams
• Multi-level planning
• Dynamic scope
• Frequent collaboration with customer and/or business sponsors

Related links: Wikipedia

Return To Glossary

Agile Software Development
Agile software development is a group of software development methodologies based on
iterative and incremental development, where requirements and solutions evolve through
collaboration between self organizing team, cross functional teams.
The development of software using Agile development practices and Agile project
management.

Encyclopedia of Agile Terminology

www.cprime.com 5

Features of Agile software development include a heavy emphasis on collaboration,
responsiveness to change, and the reduction of waste throughout the development cycle.
Agile software development (ASD) focuses on keeping code simple, testing often, and
delivering functional bits of the application as soon as they're ready.
References: Wikipedia

Return To Glossary

* Agile Unified Process
Return To Glossary

* Agilista
Return To Glossary

* Agility
Return To Glossary

Alignment
Organizations with production dependencies across department boundaries run the risk of
falling out of phase (or alignment). Alignment includes any actions or policies that exist so that
a process or activity in one section of the organization is congruent with the organization's or
business unit's governing mission. The lack of business/IT alignment is a chronic problem for
many organizations and frequently the root cause of systemic software delivery failure. Agile
development practices are designed to address many of the root causes of misalignment
between IT and the business.
References: Wikipedia

Return To Glossary

ALM
See: Application Lifecycle Management

Return To Glossary

* Anchoring
Return To Glossary

Application Lifecycle Management
"Application Lifecycle Management (ALM) is a continuous process of managing the life of an
application through governance, development and maintenance." (Wikipedia)
When Agile software development is introduced into an organization it generally requires
substantial changes in the organization's ALM tools and policies, which are typically designed
to support alternative methodologies such as Waterfall.
References: Wikipedia

Encyclopedia of Agile Terminology

www.cprime.com 6

Return To Glossary

B
Backlog

The generic term for a repository of requirements (stories / work items) that define a system
and it’s many parts. The outermost scope of work defined is the Product Backlog, which
defines all requirements/features/defects/stories for a given product. A Product Backlog is
subdivided into one or more Release Backlogs. During Sprint planning the delivery team
estimates the top most Backlog Items in the current Release Backlog and assigns them to their
Sprint Backlog where they are tracked and implemented for the current sprint.
See also: Product Backlog Item, Task, Iteration, Sprint, Sprint Backlog Product Owner, Planning Game

References: Wikipedia

Return To Glossary

Backlog Item
See: Product Backlog Item

References: Wikipedia

Return To Glossary

Backlog Item Effort
Some Scrum practitioners estimate the effort of product backlog items in ideal engineering
days, but others prefer less concrete backlog effort estimation units. Alternative units might
include story points, function points, or "t-shirt sizes" (1 for small, 2 for medium, etc). The
advantage of more vague units is that they're explicit about the distinction that product backlog
item effort estimates are estimates of effort, not duration. Also, estimates at this level are rough
guesses that should never be confused with actual working hours (Note that sprint tasks are
distinct from product backlog items and task effort remaining is always estimated in hours).
References: SolutionsIQ:Backlog Item Effort

Return To Glossary

Backlog Grooming
Backlog grooming is both an ongoing process and the name for a meeting:
The process of adding new user stories to the backlog, re-prioritizing existing stories as
needed, creating estimates, and deconstructing larger stories into smaller stories or tasks.
A meeting or ceremony that occurs regularly within a team's iteration cycle. Scrum
Alliance founder Ken Schwaber recommends that teams allocate 5% of their time to revisiting
and tending to the backlog. Backlog grooming is the term favored by the Scrum Alliance,

Encyclopedia of Agile Terminology

www.cprime.com 7

although Scrum co-founder Jeff McKenna and Australian CST Kane Mar prefer to call this
ceremony Story Time.
Return To Glossary

Big Ball of Mud
“A Big Ball of Mud is a haphazardly structured, sprawling, sloppy, duct-tape-and-baling-wire,
spaghetti-code jungle. These systems show unmistakable signs of unregulated growth, and
repeated, expedient repair. Information is shared promiscuously among distant elements of the
system, often to the point where nearly all the important information becomes global or
duplicated. The overall structure of the system may never have been well defined. If it was, it
may have eroded beyond recognition. Programmers with a shred of architectural sensibility
shun these quagmires. Only those who are unconcerned about architecture, and, perhaps, are
comfortable with the inertia of the day-to-day chore of patching the holes in these failing dikes,
are content to work on such systems.”

Brian Foote and Joseph Yoder, Big Ball of Mud.

References: Wikipedia, Big Ball of Mud

Return To Glossary

Big Visible Charts
Big visible charts are exactly what you would think they would be: Big charts posted near the
agile team that describe in different ways the team's progress. Big visible charts not only can
be useful tools for the team but also make it easier for any stakeholder to learn how the team is
progressing. Big visible charts are an important tool for implementing the essential agile values
of transparency and communication.
References: XPProgramming.com

Return To Glossary

* Blocked
See Also:

Return To Glossary

Bottleneck
Any resource or process whose capacity is less than or equal to the demand placed on it, thus
constraining the flow of work or information through the process.
See Also: Kanban

References: Wikipedia

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 8

Branching
"The duplication of objects under revision control (such as a source code file, or a directory
tree) in such a way that the newly created objects initially have the same content as the
original, but can evolve independently of the original."
References: Accurev.com

Return To Glossary

Breaking the Build
When a developer adds changes to the source code repository that result in the failure of a
subsequent build process, the developer has "broken the build." Avoiding breaking the build is
a commitment generally required by agile software developers and integral to the XP
practice continuous integration.
The build is broken if the build process cannot successfully completed for any number of
reasons including (but not limited to) failure to compile, compiling with unacceptable warnings,
or the failure of any number of (usually) automated software tests. The more comprehensive
the build process, the higher the threshold for breaking the build.
If a code submission does result in breaking the build, the developer should immediately
remove the cause. If the build breaks but the immediate cause is not self-evident, a frequent
practice of established agile development teams is to take immediate action to fix the build.
Return To Glossary

Build Process
"The amount of variability in implementation makes it difficult to come up with a tight definition
of a Build Process, but we would say that a Build Process takes source code and other
configuration data as input and produces artifacts (sometimes called derived objects) as
output. The exact number and definition of steps depends greatly on the types of inputs (Java
versus C/C++ versus Perl/ython/Ruby source code) and the type of desire output (CD image,
downloadable zip file or self-extracting binary, etc). When the source code includes a compiled
language then the Build Process would certainly include a compilation and perhaps a linking
step." (Anthillpro)
Return To Glossary

Burn-Down Chart
A Burn down chart is a chart showing how much work remaining in a sprint. Calculated in
hours remaining and maintained by the Scrum Master daily.
A publicly displayed chart that depicts the total task hours remaining per day. It shows where
the team stands regarding completing the tasks that comprise the backlog items that achieve
the goals of the sprint. The X-axis represents days in the sprint, while the Y-axis is effort
remaining (usually in ideal engineering hours). To motivate the team, the sprint burn-down
chart should be displayed prominently. It also acts as an effective information radiator. A
manual alternative to this is a physical task board. Ideally, the chart burns down to zero by the

Encyclopedia of Agile Terminology

www.cprime.com 9

end of the sprint. If the team members are reporting their remaining task hours realistically, the
line should bump up and down.

See Also: Burn-Up Chart

References: Wikipedia

Return To Glossary

Burn-Up Chart
Representation of the amount of stories completed, with points plotted on an X and Y axis that
map an upward trend of work completed until reaching 100%.

Return To Glossary

Business Alignment
See: Alignment

Return To Glossary

Business Value
Each user story in the Product Backlog should have a corresponding business value assigned.
Typically assign (L,M,H) Low, Medium, High. Product Owner prioritizes Backlog items by
highest value.
An informal term that includes all forms of value that determine the health and well-being of the
firm in the long run. It expands the concept of value of the firm beyond economic value to

Encyclopedia of Agile Terminology

www.cprime.com 10

include other forms of value such as employee value, customer value, supplier value, channel
partner value, alliance partner value, managerial value, and societal value. In the context of
agile development, it is what management is willing to pay for and a way to identify the value of
"work" or a story.
References: Wikipedia

Return To Glossary

C
Capacity

Capacity is the Number of Teammates (Productive Hours x Sprint Days).
Example:
Team size is 4,
Productive hours per person per day are 5,
Sprint length is 30 days.
Capacity = 4(5x30) = 600 hours.
Return To Glossary

* CANI
Constant And Never-ending Improvement
See Also: Kaizen, Inspect & Adapt, Retrospective

Return To Glossary

* Card-Conversation-Confirmation
XP Practices for generating a well groomed backlog, elaborating story contents and validating
completed results.
“User stories have three critical aspects. We can call these Card, Conversation, and
Confirmation.”

Ron Jeffries, 2001
References: Card-Conversation-Confirmation

Return To Glossary

Certified ScrumMaster
Someone who is acting in the role of ScrumMaster on a Scrum team and who has attended a
two-day Certified ScrumMaster (CSM) class to obtain certification.
References: Wikipedia

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 11

Chicken
Scrum slang for someone who is interested in a project but has no responsibility for working on
a task in the active iteration. They may observe team meetings but cannot vote or talk.
Chickens are the people that are not committed to the project and are not accountable for
deliverables.

References: Wikipedia

See also: Pig

Return To Glossary

Code Smell
"Any symptom in the source code of a computer program that indicates something may by
wrong." (Wikipedia)
Common code smells are often used to diagnose the quality of legacy code. Code smells
generally indicate that the code should be refactored or the overall design should be
reexamined.
See Also: Refactoring

References: Wikipedia

Return To Glossary

Colocation
Refers to development teams located and working in the same location. When possible
colocation is desirable since it facilitates face-to-face collaboration, an important features
of Agile software development. Contrast with distributed development team.
See Also: Colocation, Agile software Development, Distributed Development Team

References: Wikipedia

Return To Glossary

Continuous Integration
"Continuous Integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily - leading to

Encyclopedia of Agile Terminology

www.cprime.com 12

multiple integrations per day. Each integration is verified by an automated build (including test)
to detect integration errors as quickly as possible. Many teams find that this approach leads to
significantly reduced integration problems and allows a team to develop cohesive software
more rapidly." (MartinFowler.com)
References: Wikipedia

Return To Glossary

Cross-Functional Team
Team comprised of members with all functional skills and specialties necessary to complete a
project from start to finish.
References: Wikipedia

Return To Glossary

* Crystal
1990s
Return To Glossary

Customer
The recipient of the output (product, service, information) of a process. Customers may be
internal or external to the organization. The customer may be one person, a department, or a
large group. Internal customers (outside of Information Technology) are sometimes called the
"Business."
References: Wikipedia

Return To Glossary

D
Daily Scrum

See: Standup Meeting

Return To Glossary

Daily Standup
See: Standup Meeting

Return To Glossary

Defect
A defect is a failure or bug of the product to behave in the expected fashion. Defects are stored
in a bug-tracking system, which may or may not be physically the same system used to store

Encyclopedia of Agile Terminology

www.cprime.com 13

the Product Backlog. If not, then someone (usually the Product Owner) must enter each Defect
into the Product Backlog, for sequencing and scheduling.
See Also: Story, User Story, Technical Story, Spike, Tracer Bullet

Return To Glossary

Definition of Done
The criteria for accepting work as completed. Specifying these criteria is the responsibility of
the entire team, including the business. Generally, there are three levels of "Done" (also known
as Done-Done-Done):
Done: Developed, runs on developer's box
Done: Verified by running unit tests, code review, etc.
Done: Validated as being of deliverable quality with functional tests, reviews, etc.
However, the exact criteria for what constitutes "Done" varies to meet the specific needs of
different organizations and initiatives. An important agile principle is to deliver
(potentially) releasable software after every iteration. The definition of done is a key component
of Agile project governance used to help teams comply with this principle.
Return To Glossary

Delivery Team
In agile software development, the delivery team refers to the cross-functional group of people
that have made a collective commitment to work together to produce the work product and
improve their performance over time. In addition to software development and test roles, the
team may include any skill set necessary to deliver the work product.
The delivery team usually includes people skilled to understand customer requirements and
conduct software design, coding and testing. Additional skills (e.g. UI design, usability, etc.)
may also be included, especially when they are integral to the software release.
The delivery team is encouraged to be self-organizing and to take collective responsibility for
all work commitments and outcomes. Delivery teams respond to requirements (often presented
as user stories) by collectively defining their tasks, task assignments, and level of effort
estimates.
The ideal size for a delivery team adheres to the magic number seven plus or minus two rule.
See Also: Scrum Team, Product Owner, ScrumMaster

References: Wikipedia

Return To Glossary

* Dependency Injection Principle
See Also: SOLID OOD Principles:

 Single Responsibility Principle

Encyclopedia of Agile Terminology

www.cprime.com 14

 Open Closed Principle,

 Liskov Substitution Principle,

 Interface Segregation Principle,

 Dependency Injection Principle

Return To Glossary

Design Pattern
"A design pattern is a general reusable solution to a commonly occurring problem in software
design." (Wikipedia)
Return To Glossary

Distributed Development Team
Refers to development teams that work on the same project but are located across multiple
geographic locations or work sites. Distributed development teams are becoming the norm for
today’s software projects. When co-location is not an option, distributed teams are faced with
the challenge of keeping software projects on track and keeping remote developers engaged
collaboratively. Agile development is more difficult for distributed teams and generally require
that special practices are adopted that mitigate the inherent risks of distributed development.
See Also: Colocation

References: Wikipedia

Return To Glossary

Distributed Scrum
See Distributed Development Team

Return To Glossary

Domain Model
Information model describing the application domain that creates a shared language between
business and IT
References: Wikipedia

Return To Glossary

DSDM
See Dynamic Systems Development Method

Return To Glossary

* Dynamic Systems Development Method
Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 15

E
* Earned Value Chart

Return To Glossary

Emergence
Emergence is an attribute of complex systems. When applied to software development, it is the
principle that the best designs and the best ways of working come about over time through
doing the work, rather than being defined in advance as part of an over-arching specification or
detailed project plan.
See Also: Self-Organization

References: Wikipedia

Return To Glossary

Empiricism
Empiricism is the principle that knowledge is acquired through our experience, which we obtain
through our senses. Empiricism is the cornerstone of all scientific inquiry and the approach
used by Agile teams to identify emergent requirements and incrementally develop software.
See Also: Inspect and Adapt

References: Wikipedia

Return To Glossary

Epic
A very large user story that is eventually broken down into smaller stories. Epics are often used
as placeholders for new ideas that have not been thought out fully or whose full elaboration
has been deferred until actually needed. Epic stories help agile development teams effectively
manage and groom their product backlog.
See Also: Story, Backlog, Backlog Grooming

References: SolutionsIQ: Epic

Return To Glossary

EssUP
See Essential Unified Process

Return To Glossary

* Essential Unified Process:
Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 16

Estimation
The process of agreeing on a size measurement for the stories or tasks in a product backlog.
On agile projects, estimation is done by the team responsible for delivering the work, usually
using a planning game.
Estimates on stories are made in abstract story points.
Estimates on tasks are made in hours.
See Also: Story, Backlog, Planning Game, Tasks, Story Points

References: Wikipedia

Return To Glossary

* Estimate to Complete Chart
Return To Glossary

Extreme Programming
1996
A software development methodology adhering to a very iterative and incremental approach,
Extreme Programming is intended to improve software quality and responsiveness to changing
customer requirements. As a type of agile software development, it advocates frequent
releases in short development cycles (time-boxing), which is intended to improve productivity
and introduce checkpoints where new customer requirements can be adopted.
XP consists of a number of integrated practices for developers and management - the original
twelve practices of XP include:

1. Small Releases
2. On-site Customer
3. Sustainable Pace
4. Simple Design
5. Continuous Integration
6. Unit Testing
7. Coding Conventions
8. Refactoring Mercilessly
9. Test-Driven Development
10. System Metaphor
11. Collective Code Ownership
12. Pair Programming

Most successful Agile practitioners adopt some subset of XP practices, often in conjunction
with Scrum.
See Also: Unit Testing, Refactoring, Extreme Programming (XP), Time-box

References: Wikipedia

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 17

F
Fail-Fast

"A property of a system or module with respect to its response to failures. A fail-fast system is
designed to immediately report at its interface any failure or condition that is likely to lead to
failure." (Wikipedia)
Return To Glossary

Feature
A coherent business function or attribute of a software product or system. Features are large
and chunky and usually comprise many detailed (unit) requirements. A single feature typically
is implemented through many stories. Features may be functional or non-functional; they
provide the basis for organizing stories.
See also: Minimum Marketable Features, User Story

References: Wikipedia

Return To Glossary

FDD
See Feature Driven Development

Return To Glossary

* Feature Driven Development
Return To Glossary

Fibonacci Sequence
A sequence of numbers in which the next number is derived by adding together the previous
two (e.g. 1, 2, 3, 5, 8, 13, 21, 34...). The sequence is used to size stories in Agile estimation
techniques such as Planning Poker.
References: Fibonacci Sequence

Return To Glossary

Flow
Continuous delivery of value to customers (vs. big-batch, big-release, big-bang).
See also: Planning Poker, Fibonacci Sequence

References: Wikipedia

Return To Glossary

* Forked Development
Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 18

Fog Of War
“The fog of war is a term used to describe the uncertainty in situation awareness experienced
by participants in military operations. The term seeks to capture the uncertainty regarding own
capability, adversary capability, and adversary intent during an engagement, operation, or
campaign.”

Wikipedia
In Agile the fog of war refers to the increasing uncertainty of estimates.
As stories increase in size the level of confidence in the estimates decreases.
As stories are scheduled farther away for implementation the level of confidence in those
estimates decreases significantly. For this reason it is not reasonable to depend on estimates
for stories expected to be implemented more than a month out. As those stories come into
view on the near term schedule new estimates can be made with greater confidence.
Generally the best estimates are given during sprint planning sessions where the story is
expected to be implemented that sprint.
References: Wikipedia

Return To Glossary

* Functional Test
See Also:

Return To Glossary

G

H
* Ha

See Also: Shu-Ha-Ri, Shu, Ri

Return To Glossary

I
Impediment

In Scrum: Anything that prevents a team member from performing work as efficiently as
possible is an impediment. Each team member has an opportunity to announce impediments
during the daily standup meeting. The ScrumMaster is charged with ensuring impediments are

Encyclopedia of Agile Terminology

www.cprime.com 19

removed. ScrumMasters often arrange sidebar meetings, Parking Lot, when impediments
cannot be resolved on the spot in the daily Scrum meeting.
See also: Scrum, Daily Standup, ScrumMaster, Parking Lot

References: Wikipedia

Return To Glossary

INVEST
Criteria for well written user stories. Every user story should satisfy the following INVEST
principles:
• Independent
• Negotiable
• Valuable
• Estimable
• Small
• Testable.

Return To Glossary

* Integration Test
See Also:

Return To Glossary

Inspect and Adapt
"Inspect and Adapt" is a slogan used by the Scrum community to capture the idea of
discovering over the course of a project emergent software requirements and ways to improve
the overall performance of the team. It neatly captures the both the concept of empirical
knowledge acquisition and feedback-loop-driven learning.
See Also: CANI, Kaizen, Retrospective, Empiricism

Return To Glossary

* Interface Segregation Principle
See Also: SOLID OOD Principles:

 Single Responsibility Principle,

 Open Closed Principle,

 Liskov Substitution Principle,

 Interface Segregation Principle

 Dependency Injection Principle

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 20

* Iron Triangle
Return To Glossary

IT Alignment
See: Alignment

Return To Glossary

Iteration
A period (from 1 week to 2 months in duration) during which the Agile development team
produces an increment of completed software. All system lifecycle phases (requirements,
design, code, and test) must be completed during the iteration and then (empirically)
demonstrated for the iteration to be accepted as successfully completed. At the beginning of
the iteration, the business or the product owner identifies the next (highest priority) chunk of
work for the team to complete. The development team then estimates the level of effort and
commits to completing a segment of work during the iteration. During the iteration, the team is
not expected to change objectives or respond to change requests. However, at the front end of
the next iteration the business or product owner is free to identify any new segment of work as
the current highest priority.
See also: Sprint, Definition of Done, Velocity, Task Board, Kanban

References: Wikipedia

Return To Glossary

J

K
Kanban

Kanban is a tool derived from lean manufacturing and is associated with the branch of agile
practices loosely referred to as Lean software development. Like a task board, Kanban visually
represents the state of work in process. Unlike a task board, the Kanban constrains how much
work in process is permitted to occur at the same time. The purpose of limiting work in process
is to reduce bottlenecks and increase throughput by optimizing that segment of the value
stream that is the subject of the Kanban. Task boards simply illustrate work in process without
necessarily deliberately how much of work in process may occur at any given time, although
the same effect may be achieved through the organic self-organization of the team.
A principle difference between Kanban and Scrum is that Scrum limits work in process
through time-boxing (i.e. the sprint) and Kanban limits work in process by limiting how much
work may occur at one time (e.g. N tasks or N stories).
References: Wikipedia

Encyclopedia of Agile Terminology

www.cprime.com 21

Return To Glossary

* Kata
See Also:

Return To Glossary

* Kaizen
See Also: CANI, Inspect & Adapt, Retrospective

Return To Glossary

L
Lean Software Development

An adaption of Lean manufacturing principles and practices to the software development
domain. Lean software development (also known as Lean-Agile) is focused on reducing (lean)
waste and optimizing the software production value stream. In large part, the principles and
practices of lean software development are congruent with other well-known Agile practices
such as Scrum and extreme programming. However, in some cases they use different means
to obtain the same end. For example, Scrum and Kanban (a lean technique) both reduce work
in process (a lean waste) but use different techniques to accomplish this objective.

Authors Mary and Tom Poppendieck bring Lean Manufacturing Principles to Software
Development.
References: Wikipedia

Return To Glossary

* Levels of Planning, 5
In Scrum there are 5 levels of planning identified as :

1. Vision
2. Roadmap
3. Release
4. Sprint
5. Daily

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 22

* Liskov Substitution Principle
See Also: SOLID OOD Principles: SingleResponsibilityPrinciple, OpenClosedPrinciple,
InterfaceSegregationPrinciple, DependencyInjectionPrinciple

Return To Glossary

* Load Test
See Also:

Return To Glossary

M
Minimum Marketable Features

The smallest set of functionality that must be realized in order for the customer to perceive
value. A "MMF" is characterized by the three attributes: minimum, marketable, and feature. A
feature is something that is perceived, of itself, as value by the user. "Marketable" means that it
provides significant value to the customer; value may include revenue generation, cost
savings, competitive differentiation, brand-name projection, or enhanced customer loyalty. A
release is a collection of MMFs that can be delivered together within the time frame.
References: Wikipedia

Return To Glossary

N

O
OpenUP

See Open Unified Process

Return To Glossary

* Open Unified Process
Return To Glossary

* Open Closed Principle
See Also: SOLID OOD Principles: SingleResponsibilityPrinciple, LiskovSubstitutionPrinciple,
InterfaceSegregationPrinciple, DependencyInjectionPrinciple

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 23

* Osmotic Communication
Return To Glossary

P
Pair Programming

"An Agile software development technique in which two programmers work together at one
workstation. One types in code while the other reviews each line of code as it is typed in. The
person typing is called the driver. and the person reviewing the code is called the observer or
navigator. The two programmers switch roles frequently." (Wikipedia)
Pair programming is one of the original 12 extreme programming practices. As counter-intuitive
as it may seem to the uninitiated, pair programming is more productive than two individuals
working independently on separate tasks.
Return To Glossary

Parallel Development
Parallel development occurs whenever a software development project requires separate
development efforts on related code bases. For example, when a software product is shipped
to customers, a product development team may begin working on a new major feature release
of the product, while a product maintenance team may work on defect corrections and
customer patch releases of the shipped product. Both teams begin work from the same code
base, but the code necessarily diverges. Frequently the code bases used in parallel
development efforts must be merged at some future date, for example, to ensure that the
defect corrections provided by the product maintenance team are integrated into the major
release that the product development team is working on.
Return To Glossary

* Pareto Principle
References: BetterExplained, Wikipedia

Return To Glossary

* Parking Lot
Return To Glossary

Pattern
See: Design Pattern

Return To Glossary

* Performance Test
See Also: Profiling, Acceptance Test, Functional Test, SystemTest, Integration Test, Unit Test, Stress Test, Load
Test

Encyclopedia of Agile Terminology

www.cprime.com 24

Return To Glossary

Pig
Scrum slang. Someone who is responsible for doing a task on an active iteration. It comes
from the joke, "A chicken and a pig talk about breakfast. The chicken says, 'Let's have bacon
and eggs.' The pig replies, 'That's fine for you. You are just making a contribution, but I have to
be fully committed.'" Pigs are actively involved in the project.
See also: Chicken

References: Wikipedia

Return To Glossary

Planning
5 Levels of Planning

plans are useless but planning is indispensable. Dwight Eisenhower

See Also: Product Vision, Product Roadmap, Release Plan, Sprint Plan, Daily Standup

References: AgileJournal, RallyDev

Return To Glossary

Planning Game
"The main planning process within extreme programming is called the Planning Game. The
game is a meeting that occurs once per iteration, typically once a week. The planning process
is divided into two parts." (Wikipedia)
In XP, the planning game includes iteration (or sprint) planning and release planning. In scrum,
sprint and release planning are two of the five levels of planning used in Agile projects.
See also: Sprint Planning Meeting, Release Planning

References: Wikipedia

Encyclopedia of Agile Terminology

www.cprime.com 25

Return To Glossary

Planning Poker
"Planning Poker is a consensus-based technique for estimating, mostly used to estimate effort
or relative size of tasks in software development." (Wikipedia)
Planning poker is a game used to apply estimates to stories. It uses a voting approach
designed to avoid influence bias (anchoring).
How it Works:

1. Each estimator selects a set of cards.
2. Facilitator reads item to be estimated, and moderates a brief discussion to clarify

details.
3. Facilitator calls for estimates. Each estimator places estimate face down, hiding the

value.
4. Facilitator calls for vote, and all estimators turn over cards at the same time.
5. If all cards agree, their value is recorded as the estimate.
6. Otherwise, facilitator asks high and low estimators to explain their reasoning, and

moderates a brief discussion to clarify issues.
7. Repeat 3-6 until estimates converge

References: Wikipedia

Return To Glossary

* Pragmatic Programming

See Also: Agile Development Methods

Return To Glossary

* Predictive

See Also: Adaptive, Reactive

Return To Glossary

* Prioritization

See Also: Product Backlog

Return To Glossary

* Process Framework
Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 26

Product
Broadly speaking, product refers to a collection of tangible and intangible features that are
integrated and packaged into software releases that offer value to a customer or to a market.
The term "product" is often used in Agile software development to denote the software that is
the subject of the iteration or release. As such, "product" is generally used interchangeably
with other names for software release including "software release", "system", or "business
application."
References: Wikipedia

Return To Glossary

Product Backlog
The product backlog (or "backlog") is the requirements for a system, expressed as a prioritized
list of product backlog Items. These included both functional and non-functional customer
requirements, as well as technical team-generated requirements. While there are multiple
inputs to the product backlog, it is the sole responsibility of the product owner to prioritize the
product backlog.
During a Sprint planning meeting, backlog items are moved from the product backlog into a
sprint, based on the product owner's priorities.
See: Backlog

Return To Glossary

* Product Backlog Item
A unit of work, usually a story or a task, listed on the project backlog.
See Also: Product Backlog, Backlog, Backlog Item, Story, Task

Return To Glossary

Product Owner
Product Owner is one of the key roles in Scrum. The product owner is the primary business
representative who represents the business stakeholders' "voice of the customer" and the
"voice of the business" to the sprint team. The responsibilities of the Product Owner include:

• Establishing, nurturing, and communicating the product vision
• Creating and leading a team of developers to best provide value to the customer
• Monitoring the project against its ROI goals and an investment vision
• Making decisions about when to create an official release

The product owner is a role rather than a position. Consequently, several people likely
participate in the product owner role for larger projects.
References: Wikipedia

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 27

* Product Roadmap
Return To Glossary

Product Vision
The product vision is one of the five levels of planning.
A product vision is a brief statement of the desired future state that would be achieved through
the project initiative. The product vision may be expressed in any number of ways including
financial performance, customer satisfaction, market share, functional capability, etc. The
product vision is typically the responsibility of executive sponsorship and is articulated to the
Agile development team by the business and by the product owner, if the team is using Scrum.
References: Wikipedia:Elevator Pitch

See also: Product

Return To Glossary

* Productivity
Return To Glossary

* Profiling
See Also: Performance Test

Return To Glossary

Q

R
* Reactive

Return To Glossary

Refactoring
Changing existing software code in order to improve the overall design. Refactoring normally
doesn't change the observable behavior of the software; it improves its internal structure. For
example, if a programmer wants to add new functionality to a program, she may decide to
refactor the program first to simplify the addition of new functionality in order to
reduce technical debt.
Refactoring is one of the original twelve extreme programming practices and is considered
critical for incrementally maintaining technical quality on Agile development projects.
See Also: Code Smell, Extreme Programming, Technical Debt, Design Pattern

References: Wikipedia

Encyclopedia of Agile Terminology

www.cprime.com 28

Return To Glossary

Release (Software)
The movement of a software product or system from development into production. One
principle of Agile development is to focus on releasing software into productive use as soon as
a minimum marketable feature set can be delivered, and then proceeding with frequent
incremental releases. This is in contrast to alternative project approaches where most
requirements are delivered in one “big bang” release.
It is desirable in Agile development to produce releasable software after every iteration (or
sprint), even if the code is not actually put into production for use by end-users.
See Also: Minimum Marketable Features

Return To Glossary

Release Backlog
TBD
See Also:

Return To Glossary

Release Management
TBD
See Also:

Return To Glossary

Release Plan
The release plan is a schedule for releasing software into productive use. Typical release plans
include the key features to be delivered, along with corresponding release dates. Release
plans may also expose key milestones or dependencies that parallel project activities. In agile
development, release plans can be mapped back to the iterations (sprints) that implement the
released features.
See Also: Release, Release Planning

References: Wikipedia

Return To Glossary

Release Planning
Release planning refers to planning activities used to estimate when software will be released
into product use. Activities include projecting the level of effort in terms of the number
of iterations that will be necessary to deliver the desired features. This is typically done by
extrapolating the development team's performance on the basis of its velocity.
A release planning meeting that brings together all parties that have a stake in the outcome
and have some kind of delivery responsibility to achieve the release is often necessary to
produce a viable release plan. This is especially the case when several development and non-
development production efforts are running in parallel with possible dependencies.

Encyclopedia of Agile Terminology

www.cprime.com 29

Release planning is one of the five levels of planning.
See Also: Release Plan, Release, Sprint, Velocity

References: Wikipedia

Return To Glossary

Research Story
TBD
Return To Glossary

Resources
TBD
Return To Glossary

Retrospective
A time-boxed meeting held at the end of an iteration, or at the end of a release, in which the
team examines its processes to determine what succeeded and what could be improved. The
retrospective is key to an Agile team's ability to "inspect and adapt" in the pursuit of
"continuous improvement." The Agile retrospective differs from other methodologies' "Lessons
Learned" exercises, in that the goal is not to generate a comprehensive list of what went
wrong. A positive outcome for a retrospective is to identify one or two high-priority action items
the team wants to work on in the next iteration or release. The emphasis is on actionable
items, not comprehensive analysis. Retrospectives may take many forms, but there is usually a
facilitator, who may or may not be a member of the team, and the process is typically broken
down into three phases: data gathering, data analysis, and action items.
See Also: Sprint, Release, Inspect & Adapt, Effective Retrospectives, CANI, Kaizen, Inspect & Adapt

References: Wikipedia

Return To Glossary

* Ri
See Also: Shu-Ha-Ri, Shu, Ha

Return To Glossary

* ROI
Return To Glossary

* Ron Dori
See Also:

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 30

S
* Schedule

Return To Glossary

* Scope
Return To Glossary

Scrum
A lightweight process framework originally developed in 1995 by Ken Schwaber and Jeff
Sutherland.
Scrum is a framework for the iterative development of complex products, particularly software.
Scrum is the most widely recognized Agile framework, and is compatible with other Agile
practices like Extreme Programming. Scrum is comprised of a series of short iterations -
called sprints - each of which ends with the delivery of an increment of working software. The
framework is comprised of:

• Three roles of the Scrum Team
1. Product Owner
2. ScrumMaster
3. Delivery Team

• Five Time-boxes:

1. Sprint
2. Sprint Planning Meeting
3. Daily Standup Meeting
4. Sprint Review
5. Retrospective

• Three artifacts:

1. Burn-down charts
2. Product backlog
3. Sprint backlog

Sometimes the term Scrum is used interchangeably with the term Agile, but this is incorrect.
Agile is not a framework, but a broader set of values and principles, while Scrum is a specific
framework that fits comfortably under the Agile umbrella.
See Also:

References: ScrumAlliance, Scrum.org, ScrumGuide

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 31

ScrumBut
ScrumButs are reasons why teams can’t take full advantage of Scrum to solve their problems
and realize the full benefits of product development using Scrum. Every Scrum role, rule, and
timebox is designed to provide the desired benefits and address predictable recurring
problems. ScrumButs mean that Scrum has exposed a dysfunction that is contributing to the
problem, but is too hard to fix. A ScrumBut retains the problem while modifying Scrum to make
it invisible so that the dysfunction is no longer a thorn in the side of the team.
A ScrumBut has a particular syntax: (ScrumBut)(Reason)(Workaround)
ScrumBut Examples:
"(We use Scrum, but) (having a Daily Scrum every day is too much overead,) (so we only have
one per week.)"
"(We use Scrum, but) (Retrospectives are a waste of time,) (so we don't do them.)"
"(We use Scrum, but) (we can't build a piece of functionality in a month,) (so our Sprints are 6
weeks long.)"
"(We use Scrum, but) (sometimes our managers give us special tasks,) (so we don't always
have time to meet our definition of done.)"
Sometimes organizations make short term changes to Scrum to give them time to correct
deficiencies. For example, "done" may not initially include regression and performance testing
because it will take several months to develop automated testing. For these months,
transparency is compromised, but restored as quickly as possible.
See Also: Scrum, ScrummerFall, ScrumPlus

References:

Return To Glossary

ScrummerFall
Waterfall management style using iterations and scrum elements. Waterfall/SDLC have
distinct stages (Analysis, Design, Develop, Test, Deploy, Maintenance). Scrum combines all
stages in a single sprint (iteration).
ScrummerFall happens when a group attempts to bridge these two concepts:
Design/Requirement docs are generated in detail ahead of time. Development is completed
each sprint then passed to another team for testing outside of that sprint.
a.k.a: Mini-Waterfall

See Also: Scrum, ScrumBut, ScrumPlus

References:

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 32

ScrumPlus
Enhancing the Scrum kernel with additional Agile practices that improve transparency,
engineering focus, quality management, release management...
See Also: Scrum, ScrumBut, ScrummerFall,

References:

Return To Glossary

Scrum Team
The scrum team consists of three roles;
1. ScrumMaster
 Maintains the processes (typically in lieu of a project manager)
2. Product Owner
 Represents the stakeholders and the business
3. Delivery Team
 A cross-functional group who do the actual analysis, design, implementation, testing, etc.
References: Wikipedia:Project Manager

Return To Glossary

ScrumMaster
The ScrumMaster is responsible for maintaining the Scrum process and the overall health of
the team. The ScrumMaster assures that the team is fully functional and productive. The
ScrumMaster performs this role by administering the Scrum time-boxes, facilitating the
organic self-organization of the team, and removing any obstacles that may be impeding the
team’s progress.
What the ScrumMaster is not:
The ScrumMaster is not the task master, since the team is responsible for assigning its own
tasks.
The ScrumMaster is not the supervisor of the team, since the supervisor/subordinate
relationship may impede the organic self-organization of the team.
A good ScrumMaster proactively anticipates problems, opportunities for improvement, and
conducts pre-planning so the team can focus on delivering its sprint commitments. The
ScrumMaster also keeps the team honest regarding its commitments and helps the team
identify opportunities to improve collaboration.
In Scrum, when the Scrum roles are properly fulfilled there is no need for a traditional project
manager to supervise the team. Nevertheless, many organizations choose to retain project
managers, after they adopt Scrum, to perform functions that extend beyond the scope of the
Scrum team functions.
References: Wikipedia

Encyclopedia of Agile Terminology

www.cprime.com 33

Return To Glossary

Scrum Snowman
The scrum process of frequent and early feedback cycles is often referred to as the “snowman
model” as the cyclic graph resembles a snowman.

References: MountainGoatSoftware

Return To Glossary

Self-Organization
Self-organization is a property of complex adaptive systems, whereby the organization of the
system emerges over time as a response to its environment. In Agile development, particularly
in Scrum, self-organization is a property of the agile development team, which organizes itself
over time, rather than being ordered by an external force such as a project or development
manager. Self-organization also reflects the management philosophy whereby operational
decisions are delegated as much as possible to those who have the most detailed knowledge
of the consequences and practicalities associated with those decisions.
See Also: Emergence, Inspect and Adapt

References: Wikipedia: Self-Organization, Wikipedia: Complex Adaptive Systems

Return To Glossary

* Shu
See Also: Shu-Ha-Ri, Ha, Ri

Return To Glossary

* Shu-Ha-Ri
See Also: Shu, Ha, Ri

Return To Glossary

* Sidebar
See Also: Parking Lot

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 34

* Single Responsibility Principle
See Also: SOLID OOD Principles:

 Single Responsibility Principle

 Open Closed Principle,

 Liskov Substitution Principle,

 Interface Segregation Principle,

 Dependency Injection Principle

Return To Glossary

* Software Quality Metrics
Dynamic Source Analysis
 Code Coverage
 Line Coverage
 Branch Coverage
 Method Coverage
 Class Coverage
 Package Coverage
Static Source Analysis
 Coding Standards
 Style, Formatting
 StyleCop
 Architectural Rules Compliance
 Findbugs, PMD, Checkstyle, FxCop
LCOM4
Complexity
 CCN
NCSS
Coupling
 Afferent Coupling
 Efferent Coupling
Spider Graph
Duplication: CPD

Encyclopedia of Agile Terminology

www.cprime.com 35

See Also: Wikipedia, Sonar-Metrics

Return To Glossary

* SOLID OOD Principles
See Also: Single Responsibility Principle

 Open Closed Principle,

 Liskov Substitution Principle,

 Interface Segregation Principle,

 Dependency Injection Principle

Return To Glossary

Spike
A story or task aimed at answering a question or gathering information, rather than
implementing product features, user stories, or requirements. Sometimes a user story is
generated that cannot be estimated until the development team does some actual work to
resolve a technical question or a design problem. The solution is to create a “spike,” which is a
story whose purpose is to provide the answer or solution. Like any other story or task, the
spike is then given an estimate and included in the sprint backlog.
Return To Glossary

Sprint
The Scrum term for an iteration. The sprint starts with a sprint planning meeting. At the end of
the sprint there is a sprint review meeting, followed by a sprint retrospective meeting.
References: Wikipedia

Return To Glossary

Sprint Backlog
A list of features, user stories or tasks that are pulled from the product backlog for
consideration for completion during the upcoming sprint. Product backlog features and user
stories are broken down into tasks to form the sprint backlog during the sprint planning
meeting.
See Also: Backlog, Sprint

References: Wikipedia

Return To Glossary

Sprint Burn-Down Chart
See Burn-Down Chart

Sprint Planning Meeting
Each sprint begins with a two-part sprint planning meeting, the activity that prioritizes and
identifies stories and concrete tasks for the next sprint. For a one-month or four-week sprint,

Encyclopedia of Agile Terminology

www.cprime.com 36

this two-part meeting should last eight hours; for a two-week sprint, it lasts about four hours. As
a general rule of thumb, the number of weeks in a sprint multiplied by two hours equals the
total length of the spring planning meeting.
• Part one of the sprint planning meeting is a review of the product backlog. This is when

the product owner describes what needs to be built for the next sprint. During this part of the
meeting, it is not uncommon for the team to discuss the sprint objectives with the product
owner, and ask clarifying questions and remove ambiguity.

• During part two of the sprint planning meeting, the team decides how the work will be built.
The team will begin decomposing the product backlog items into work tasks and estimating
these in hours. The product owner must be available during this meeting but does not have to
be in the room. The output of the second planning meeting is the Sprint Backlog.

References: Wikipedia, Card-Conversation-Confirmation

Return To Glossary

Sprint Review
A meeting held at the end of each sprint in which the delivery team shows what they
accomplished during the sprint; typically this takes the form of a demo of the new features. The
sprint review meeting is intentionally kept very informal. With limited time allocated for Sprint
review prep. A sprint review meeting should not become a distraction or significant detour for
the team; rather, it should be a natural result of the sprint.
References: Wikipedia

Return To Glossary

Stakeholder
Anyone external to the team with a vested interest in the outcome of the team's work.
See Also: Chicken

References: Wikipedia

Return To Glossary

Standup Meeting
The Daily Standup Meeting is a minimalist status meeting, time-boxed to fifteen minutes. Its
purpose is to ensure that questions are answered quickly, that issues are identified and
addressed quickly, and to provide Team members with a common understanding of how the
Sprint is progressing. The ScrumMaster facilitates this meeting.
Three questions asked:

• What have you done since last daily scrum?
• What will you do before the next daily scrum?
• What obstacles are impeding your work?

Encyclopedia of Agile Terminology

www.cprime.com 37

These items are often referred to as Y-T-I (Yesterday, Today, Impediments)
The ScrumMaster ensures that participants call sidebar meetings for any discussions that go
too far outside these constraints.
The Scrum literature recommends that this meeting take place first thing in the morning, as
soon as all team members arrive.
a.k.a: Daily Scrum, Daily Standup

References: Wikipedia

Return To Glossary

Story
Scrum requirements written in short narrative form. There are 5 types of requirement stories:

1. User Story
2. Technical Story
3. Defect
4. Spike
5. Tracer Bullet

See User Story

References: Wikipedia, Card-Conversation-Confirmation

Return To Glossary

Story Points
Story points are an abstract measure of effort to implement a story. Story points can be
evaluated in either Absolute or Relative units.
Absolute units are directly related to time with 1 story point equal to 8 person hours of work.
Because absolute units are directly related to time they can be compared across teams.
Relative units are based on a known pivot story and are rated as either larger or smaller than
the pivot by some factor. The size of the pivot is specific to the team, therefore estimates of
stories across teams are not equal, nor are velocity measurements.
See also: Estimation

Return To Glossary

* Stress Test
See Also: Load Test

Return To Glossary

* Swarming
Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 38

T
Task

Tasks are descriptions of the actual work that an individual or pair does in order to complete
a story. They are manageable, doable, and trackable units of work. Typically, there are several
tasks per story. Tasks have the following attributes, and all tasks must be verified complete -
not just "done":

• A description of the work to be performed, in either technical or business terms
• An estimate of how much time the work will take (hours, days)
• An owner, who may or may not be pre-assigned
• An exit criteria and verification method (test or inspection)
• An indication of who will be responsible for the verification

See Also: Story, Sprint Planning, Task Breakdown

References: Wikipedia

Return To Glossary

Task Board
A chart that presents, at minimum, "to do", "in progress", and "done" columns for organizing a
team's work. Some teams include their backlog as a column on the task board, while others
limit it to work to be performed during the current iteration. Ideally, the task board is a physical
thing, consisting of note cards or sticky notes affixed to a wall, although distributed teams may
use an online task board application. The task board may illustrate tasks or other forms of work
such as user stories. In Scrum, the task board is often used to illustrate the tasks for the
current sprint, populated with tasks for the current sprint, while other Agile teams may populate
it with user stories.
See Also: Sprint Backlog, Sprint Planning, Task, Kanban, Big Visible Charts

References: Wikipedia

Return To Glossary

* Task Breakdown
Return To Glossary

Team
In Agile Software Development, the team refers to the cross-functional group of people that
have made a collective commitment to work together to produce the work product and improve
their performance over time. In addition to software development and test roles, the team may
include any skill set necessary to deliver the work product.
In Scrum the Team can refer to one of two groups of people

Encyclopedia of Agile Terminology

www.cprime.com 39

1. Scrum Team: members identified by each of 3 Scrum roles.
2. Delivery Team: A cross-functional subset of the Scrum Team.

See Also: Scrum Team, Delivery Team, Self-Organization

Return To Glossary

Technical Debt
A term coined by Ward Cunningham to describe the obligation that a software organization
incurs when it chooses a design or construction approach that's expedient in the short term but
that increases complexity and is more costly in the long term. Whether or not to incur technical
debt is a tradeoff decision that ideally is made in a deliberate manner at the point that work
occurs.
See Also: Refactoring

References: Wikipedia

Return To Glossary

* Technical Story
See Also: Story

Return To Glossary

Test Automation
"The use of software to control the execution of tests, the comparison of actual outcomes to
predicted outcomes, the setting up of test preconditions, and other test control and test
reporting function." (Wikipedia)
In agile development, test automation is frequently used to automate unit tests, integration
tests, and functional tests. Since the definition of done for most agile projects requires that
code be thoroughly tested by the end of the iteration, test automation is critical if not necessary
to obtain acceptable velocity. In addition, for most practical purposes, test automation is
necessary to effectively apply continuous integration and remain true to the commitment to not
"break the build."
See Also: Unit Testing

References: Wikipedia

Return To Glossary

Test-Driven Development
"Test-Driven Development is a software development process that relies on the repetition of a
very short development cycle: first the developer writes a failing automated test case that
defines a desired improvement or new function, then produces code to pass that test and
finally refactors the new code to acceptable standards." (Wikipedia)
Ken Beck is credited for having invented TDD, one of the original 12 XP practices.

Encyclopedia of Agile Terminology

www.cprime.com 40

See Also: Unit Testing

References: Wikipedia

Return To Glossary

Time-box
A time-box is a time period of fixed length allocated to achieve some objective. In agile
development, iterations and sprints are examples of time-boxes that limit work in process and
stage incremental progress. Time-boxes are often used to avoid over-investing in tasks such
as estimating development tasks.
References: Wikipedia

Return To Glossary

* Tracer Bullet
Return To Glossary

* Transparency
Return To Glossary

* Tuckman Model

References: Wikipedia, TeamTechnology, TuckmansTeamDevelopmentModel.pdf

Return To Glossary

U
Unit Testing

"A unit is the smallest testable part of a software system. In procedural programming, a unit
may be an individual function or procedure." (Wikipedia)

Encyclopedia of Agile Terminology

www.cprime.com 41

Comprehensive unit test coverage is an important part of software integrity and should be
automated to support the incremental delivery requirements of agile software development
teams. In most cases, unit testing is the responsibility of the developer.
See Also: Test-Driven Development, Test Automation

References: Wikipedia

Return To Glossary

User Story
A requirement, feature and/or unit of business value that can be estimated and tested. Stories
describe work that must be done to create and deliver a feature for a product. Stories are the
basic unit of communication, planning, and negotiation between the Scrum Team, Business
Owners, and the Product Owner. Stories consist of the following elements:

• A description, usually in business terms
• A size, for rough estimation purposes,

• generally expressed in story points (such as 1, 2, 3, 5)
• An acceptance test, giving a short description of how the story will be validated

See Also: Story, Technical Story, Defect, Spike, Tracer Bullet, INVEST

References: Wikipedia

Return To Glossary

V
Velocity

Velocity measures how much work a team can complete in an iteration. Velocity is often
measured in stories or story points. Velocity may also measure tasks in hours or an equivalent
unit. Velocity is used to measure how long it will take a particular team to deliver future
outcomes by extrapolating on the basis of its prior performance. This works in Agile
development, when work is comprehensively completed after each iteration.
References: Wikipedia

Return To Glossary

* Velocity Tracking
Return To Glossary

Vision
See Product Vision

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 42

Voice of the Customer (VOC)
"Voice of the Customer (VOC) is a term used in business and Information Technology (through
ITIL) to describe the in-depth process of capturing a customer's expectations, preferences, and
aversions. Specifically, the Voice of the Customer is a market research technique that
produces a detailed set of customer wants and needs, organized into a hierarchical structure,
and then prioritized in terms of relative importance and satisfaction with current alternatives."
(Wikipedia)
References: Wikipedia

Return To Glossary

W
Wiki

An editable intranet site where details of stories and tracking information may be recorded
during development.
References: Wikipedia

Return To Glossary

* WIP
See Work inProgress.

Return To Glossary

* Work Breakdown Structure
Return To Glossary

Work in Progress (WIP)
Any work that has not been completed but that has already incurred a capital cost to the
organization. Any software that has been developed but not deployed to production can be
considered a work in progress.
References: Wikipedia

Return To Glossary

X
XP

See: Extreme Programming

Return To Glossary

Encyclopedia of Agile Terminology

www.cprime.com 43

Y
* YAGNI

You Aint Gonna Need It (yet)
Return To Glossary

* YAGRI
You Aint Gonna Release It (yet)
Return To Glossary

Z

Resources: Articles & White Papers

44

Reference Articles and Papers

The following are links and abstracts relating to various articles and blogs found on the web.
This collection of articles were chosen for their value and importance to Agile Software
Development.

Agile Architectures
Return To Glossary

Agile Architecture
by Chris Sterling @ SolutionsIQ, CST
by Mickey Phoenix @ SolutionsIQ, CSM

As companies begin to embrace Agile methods, questions about architecture begin to
emerge. In this presentation, learn about the approaches two experts took to better align
businesses with architecture goals.

Distributed Scrum
Return To Glossary

Successful Distributed Agile Team Working Patterns
by Monica Yap @ SolutionsIQ, CSM

Explore some common successful distributed team working patterns that have been
used on distributed Agile development projects in this white paper and related
presentation.

Case Study: Implementing Distributed Extreme Programming
by Monica Yap @ SolutionsIQ, CSM

This white paper details the challenges a team at WDSGlobal faced in a distributed
development environment, lessons learned, and how issues such as global continuous
integration, cultural differences, and conflicting priorities were resolved across regions.

Daily Scrums in a Distributed World
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Meta-Scrum
Return To Glossary

Establishing and Maintaining Top to Bottom Transparency Using Meta-Scrum
by Brent Barton @ SolutionsIQ, CST

Learn how a properly executed Meta-Scrum helps drive transparency vertically into the
organization in this Agile Journal article.

Resources: Articles & White Papers

45

Agile Adoption
Return To Glossary

Introduction to Scrum
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

The benefits and practices of Scrum

Scrum as Project Management
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Comparing and Contrasting Scrum to Traditional Project Management

The Agile Story: Scrum Meets PMP
by Crystal Lee @ cPrime, PMP, CSM

Do you know what a Scrum is? Wondering if you should try Scrum on your next project?

When to Use Scrum
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Scrum is a lightweight agile process framework used primarily for managing software
development.

Agile Top-Down: Striking a Balance
by Bryan Stallings @ SolutionsIQ, CST

Agile is being evangelized in executive boardrooms and introduced top-down with
increasing frequency. Learn about the appropriate role of senior leadership in an
effective Agile transformation in this Agile Journal article.

Agile ROI Part I: The Business Case for Agility
by John Rudd @ SolutionsIQ

This Agile Journal article describes some of the financial benefits of adopting Agile and
how to quantify the potential value of these innovative practices for your organization.
Learn how Agile methods can help financial professionals squeeze money out of work-
in-process, drive risk out of projects, and improve project and portfolio return.

Agile ROI Part II: The Business Case for Agility
by David Wylie @ SolutionsIQ

This presentation explores how to quantify the potential value of Agile practices for your
organization and how to demonstrate this value for key decision makers.

Scrum in the Enterprise
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

"Scrum in the Enterprise" is a white paper written by Kevin Thompson, one of cPrime's
Agile Implementation Specialists. The paper talks about the common issues that
companies face while making the transition to Agile Development, while explaining how

Resources: Articles & White Papers

46

to prepare for and overcome them. Kevin writes about topics from how to use Scrum in
a hybrid environment to how to collaborate in Scrum teams. This white paper will
interest and benefit anyone who is involved with Agile projects or just interested in the
methodology.

How Uncertainty Works
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Why it exists, how it behaves, how it accumulates, how to reduce it, and how to cope
with it.

The Price of Uncertainty
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

A Mathematical Analysis of Classic and Agile Processes
Proponents of agile development processes, such as Scrum, frequently claim that agile
projects are more likely to be successful than traditional plan-driven projects.
Unfortunately, attempts to validate this claim based on statistical evidence are difficult.
The difficulty arises partly because the two approaches have different concepts of
success, and partly because definitions of success are not uniform even within each
approach. This paper addresses the question by performing a simple mathematical
analysis of plan-driven and agile projects.

How Agile should your Project be?
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Advocates of agile development claim that agile software projects succeed more often
than classic plan-driven projects. Unfortunately, attempts to validate this claim
statistically are problematic, because "success" is not defined consistently across
studies. This paper addresses the question through a mathematical analysis of these
projects. We model agile and plan-driven software projects with identical requirements,
and show how they are affected by the same set of unanticipated problems. We find
that that the agile project provides clear benefits for return-on-investment and risk
reduction, compared to the plan-driven project, when uncertainty is high. When
uncertainty is low, plan-driven projects are more cost-effective. Finally, we provide
criteria for choosing effective process types.

Integrating Waterfall and Agile Development
by Shayan Alam @ cPrime.com, PMP

Use these tips to help integrate both methodologies into your development organization.

Rational Unified Process Best Practices
by Crystal Lee @ cPrime.com, PMP,

Provide background on each best practice, in the context of current RUP adoption.

Resources: Articles & White Papers

47

Effective Retrospectives
by Kendrick Burson @ cPrime.com, CSM, CSPO

A better understanding of Team Retrospectives with plenty of examples of different
patterns for facilitating.

Transitioning From Time-Based to Relative Estimation
by Ilan Goldstein @ ScrumAlliance.org, CSM, CSPO, CSP

Congratulations! You’ve finally convinced the team that relative story point estimation is
a great way to move forward and you’re now ready to jump into your first planning poker
session. So where do you start? What’s a 1-point story? What’s a 3-point story? What’s
a 13-point story? Your team is looking to you and this process is almost as new to you
as it is to them.
Most of the issues with gathering requirements in agile software development and agile
testing derive from issues with User Stories. Somehow expressing requirements in such
a simple form causes a lot of trouble to agile teams. Of course art of writing good User
Stories is the most difficult for new teams starting with a new agile project or these,
which freshly transformed development methods to agile software development
methodologies. Mistakes made at that point lead to wrong Test Cases, wrong
understanding of requirements, and the worst of all wrong implementation which can be
direct cause of rejecting the deliverables of the iteration. Lets take a look at the five
most common mistakes people make writing User Stories.

5 Common Mistakes We Make Writing User Stories
by Krystian Kaczor @ ScrumAlliance; CSM, CSP

Most of the issues with gathering requirements in agile software development and agile
testing derive from issues with User Stories. Somehow expressing requirements in such
a simple form causes a lot of trouble to agile teams. Of course art of writing good User
Stories is the most difficult for new teams starting with a new agile project or these,
which freshly transformed development methods to agile software development
methodologies. Mistakes made at that point lead to wrong Test Cases, wrong
understanding of requirements, and the worst of all wrong implementation which can be
direct cause of rejecting the deliverables of the iteration. Lets take a look at the five
most common mistakes people make writing User Stories.

Agile Project Dashboards
Bringing value to stakeholders and top management

by Leopoldo Simini @ ScrumAlliance; CSM, CSP

“Scrum is all about delighting customers and delivering value to stakeholders.” I have
read this kind of statement since my first day working with Scrum in 2007. Even more,
I’ve had the privilege of taking part on Scrum teams th...

Resources: Articles & White Papers

48

Daily Stand-up, Beyond Mechanics: A Measure of Self-Organization
by Bachan Anand CSM, CSPO, CSP

Affinity Estimation for Release Planning
by Monica Yap @ SolutionsIQ

Managing Risk in Scrum, Part 1
by Valerie Morris @ SolutionsIQ

Product Owner Anti-Patterns
by Monica Yap @ SolutionsIQ

Part 1: The Absent Product Owner
Part 2: The Churning Backlog
Part 3: No Single Product Owner
Part 4: Copy the Old One

Card-Conversation-Confirmation
by Ron Jeffries, 2001

XP Practices for generating a well groomed backlog, elaborating story contents and
validating completed results.
“User stories have three critical aspects. We can call these Card, Conversation, and
Confirmation.”

Ron Jeffries, 2001

Recognizeing Bottlenecks in Scrum
by Dhaval Panchal @ SolutionsIQ, CST

Part 1
Part 2

If At First You Don't Succeed, Fail, Fail Again
by Michael Tardiff @ SolutionsIQ, CSM, CSPO

What is the Definition of Done (DoD) in Agile?
by Dhaval Panchal @ SolutionsIQ, CST

DoD is a collection of valuable deliverables required to produce software.
DoD is the primary reporting mechanism for team members.
DoD is informed by reality.
DoD is not static
DoD is an audit-able checklist.

Resources: Articles & White Papers

49

How Should We Deal With the Mess That Scrum Exposes?
by Monica Yap @ SolutionsIQ, CSM, CSPO

Part 1 of 5) How Should We Deal With the Mess That Scrum Exposes?
Part 2 of 5) Scrum Exposes the Mess With No Quality Built In
Part 3 of 5) Scrum Exposes the Mess of Unstable Code Base
Part 4 of 5) Scrum Exposes the Mess of Excess Specialists
Part 5 of 5) The Mess That Scrum Exposes: Putting It All Together

The Afternoon ScrumMaster: Keeping Agile Teams on Track
by Dhaval Panchal @ SolutionsIQ

The Short Short Story
by Paul Dupuy @ ScrumAlliance; CSM

The short short story: How long does it have to be? Scrum teams often use user stories
for backlog items. Unfortunately, one of the most important aspects of a story—its
extremely short length—has been subtly transformed over time, an...

Is Sustainable Pace Nice to Have? Think Again!
by Manoj Vadakkan CSM, CSP

Most of the time, “selling” Agile is easy these days. Everyone agrees that iterative and
incremental development is a better alternative; more user interaction is better; so on
and so forth. At some point, I will talk about the import...

Agile User Interface Design and Information Architecture From the Trenches
by Robin Dymond @ ScrumAlliance; CSM, CSP, CST

I was a Technology Director in a large web design company 6 years ago, and they failed
to adopt Scrum. There were numerous management dysfunctions; however the Creative
managers were the most resistant. Primarily, it was a case of not wanting real...

Why Agile Does Matter in an Embedded Development Environment
by Bent Myllerup @ ScrumAlliance; CSM, CSPO, CSP, CSC

The software industry has achieved great results by introducing agile methods like
Scrum. Agile methods create outcomes that benefit customers as well as management
and employees of the business. The results have been proven in the form of increas...

The Illusion of Precision
by Jim Schiel @ ScrumAlliance; CSM, CSP, CST

For me, one of the most intriguing, yet not explicitly stated, fundamentals of
AgileDevelopment is the practice of analyzing and designing just enough of what we are
planning to build that we can then move forward to build it. You can find specifi...

Resources: Articles & White Papers

50

Specialization and Generalization in Teams
by Bas Vodde @ ScrumAlliance; CSM, CSPO, CSP, CST

Specialization in Scrum has been a hot topic for many years and pops up at every
Scrum course I run. It is an important issue that’s particularly relevant for a new team in
their first Sprint. Scrum defines specialization as a cross-functio...

The Importance of Self-Organisation
by Geoff Watts @ ScrumAlliance; CSM, CSP, CSC, CST

"An empowered organization is one in which individuals have the knowledge, skill,
desire, and opportunity to personally succeed in a way that leads to collective
organizational success." -- Stephen R. Covey, Principle-centered Leadership

Manager 2.0: The Role of the Manager in Scrum
by Pete Deemer @ ScrumAlliance; CSM, CSP, CST

Bibliography

51

