
 Agile Glossary

Agile Term Definition

Acceptance Criteria

Those criteria by which a work item (user story) can be judged to have
been successfully implemented and tested. A story is ‘done’ when all
criteria pass testing; conversely, a story is not ‘done’ if any criteria fail
testing. Acceptance Criteria are discreet testable features that relate
to the Conditions of Satisfaction that describe a higher level of
conditions that, when met, deliver business value.

Acceptance Testing

The process to validate that a work item (user story) meets the
specified acceptance criteria. Ideally, the approach is to automate as
much as possible with tools and techniques available commercially
and in the open source community. The result/output of acceptance
testing is a report that identifies the status of each acceptance criteria
being tested and whether that item passes or fails.

Agile Development

Agile development is a conceptual framework and approach to
software development based on principles in the Agile Manifesto. The
term is an “umbrella” for a number of specific methodologies based
on iterative development techniques where requirements and
deliverables evolve through collaboration between self-organizing,
cross-functional teams.

The most popular agile methodologies include: extreme programming
(XP), Scrum, Crystal, Dynamic Systems Development (DSDM), Lean
Development, and Feature Driven Development (FDD).

Agile Manifesto

A Manifesto for Agile Software Development is an historical document
authored in February of 2001 at a ski resort in Utah. The meeting was
held to discuss different approaches to lightweight, responsive,
adaptable software development. The Manifesto represents their
combined best thinking. It comprises two parts: four value statements
and twelve principles.

Here are the four value statements of the Manifesto:

"We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more."

Agile Methods
Some well-known agile software development methods include:
• Agile modeling
• Agile Unified Process (AUP)

Copyright © 2013 cPrime Inc. All rights reserved.

• Dynamic Systems Development Method (DSDM)
• Essential Unified Process (EssUP)
• Feature Driven Development (FDD)
• Open Unified Process (Open UP)
• Scrum
• Velocity Tracking

Agile Modeling

Agile Modeling is a practice-based methodology for Modeling and
documentation of software-based systems. It is intended to be a
collection of values, principles, and practices for Modeling software
that can be applied on a software development project in a more
flexible manner than traditional Modeling methods.

Agile Practices

Agile practices are procedures that are defined as being highly
efficient to productivity, and include the following practices: user
stories, cross-functional teams, unit testing, refactoring, continuous
integration, multi-stage continuous integration, planning poker,
burnup charts, burndown charts.

Application Lifecycle
Management (ALM)

Also called ALM, Application Lifecycle Management is the
management platform of the entire software application lifecycle, from
planning to the final release. Key components of the platform include
the ability to handle change management, workflow, source code
management, task management, testing and bug tracking, reporting
and analytics.

Backlog

Also knows as "product backlog," the backlog is a prioritized list of
user stories and defects in order from most valuable to least valuable
for a system. Backlogs include both functional and non-functional
user stories as well as technical team-generated stories.

Behavior Driven Development
(BDD)

Behavior-driven development (or BDD) is an agile software
development technique that encourages collaboration between
developers, QA and non-technical or business participants in a
software project. It was originally named in 2003 by Dan North as a
response to test-driven development, including acceptance test or
customer test driven development practices as found in extreme
programming. It has evolved over the last few years.

BDD focuses on obtaining a clear understanding of desired software
behavior through discussion with stakeholders. It extends TDD by
writing test cases in a natural language that non-programmers can
read. Behavior-driven developers use their native language in
combination with the ubiquitous language of domain-driven design to
describe the purpose and benefit of their code. This allows the
developers to focus on why the code should be created, rather than
the technical details, and minimizes translation between the technical
language in which the code is written and the domain language
spoken by the business, users, stakeholders, project management,
etc.

Branching

Branching is the duplication of objects under revision control (such as
a source code file, or a directory tree) in such a way that the newly
created objects initially have the same content as the original, but can
evolve independently of the original. Branching can take two forms,
static or dynamic. In static branches, copy and label operations are
used to duplicate a given branch. The duplicate then can evolve
independently. With dynamic branches, usually implemented in

streams, only the label operation is used, to flag the point in time that
a stream diverged from its parent stream. Both branching forms
support some form of merging, so that code changes made on a
branch can be re-integrated into another branch, as is typical in
parallel development processes.

Burndown Chart

Representation of the number of hours remaining for completion of a
project; usually represented in chart form with points plotted on an x
and y axis that map a downward trend of work left to do until burning
down to zero.

Burnup Chart

Representation of the number of stories completed; usually
represented in chart form with points plotted on an x and y axis that
map an upward trend of work completed until reaching 100%.

Collocation
(Collocated Teams)

Collocation refers to development teams located and working in the
same location. Collocation is usually applied at the cross-functional
team level.

Collocation is an important (but not required) concept in Agile
development to promote collaboration and osmotic communication.

Conditions of Satisfaction

High-level criteria by which a work item (user story) can be judged to
have been successfully implemented and tested to deliver business
value. A story is ‘done’ when all conditions pass testing; conversely,
a story is not ‘done’ if any conditions fail testing. Conditions of
Satisfaction are proved to be met by delivery of working code through
Acceptance Testing.

Constraint
Anything that limits a progress from achieving higher performance;
i.e., throughput, cycle time, quality, technical capabilities, etc.

Continuous Integration

Continuous integration, one of the foundational aspects of Agile
software development methodologies, is defined by Martin Fowler to
be "a fully automated and reproducible build, including testing, that
runs many times a day. This allows each developer to integrate daily,
thus reducing integration problems." By getting changes into the main
line as frequently as possible, preferably daily, and by extending the
idea of a nightly build, continuous integration helps reduce
integrations problems and identify and resolve problems more
quickly.

Cross-functional Team
Team comprised of members with all functional skills and specialties
necessary to complete a project from start to finish.

Distributed Teams
Development teams that work on the same project but are located
across multiple locations or worksites.

DMAIC

The five stages of a cycle of continuous improvement associated with
the "six sigma" approach.

o Define - Identify the stakeholders, the problem, and
its scope.

o Measure - Establish the metrics for analyzing the
problem and determining the impact of any proposed
changes.

o Analyze - Review the collected data, establish
performance gaps and variation, identify best

practices
o Improve - Design and develop a solution, validate

and then implement the solution.
o Control - Establish new standards, update

measurement systems, and plan to maintain and
improve.

Enterprise Agile Development

The adoption of specific Agile practices in an organization that works
in conjunction with other non-Agile practices. Enterprise Agile
Development is a highly efficient and customized practice for large
organizations that have difficulty making a complete transition to
Agile, as well as for organizations that already practice efficient
development processes.

Epic
A user story which describes a large amount of customer value and
needs to be broken down into many smaller user stories.

Feature-Driven Development
(FDD)

Feature Driven Development (FDD) is an Agile method for developing
software based on an iterative and incremental software development
process. The main purpose of FDD is to deliver tangible, working
software repeatedly in a timely manner.

Four D’s

The four types of tasks that can make up an Agile story.
o Discover - Gather/research information, define sprint

deliverables.
o Develop - Create implementation plans, construct and

test deliverables.
o Deliver - Train employees, execute plans, release

deliverables.
o Debrief - Monitor results, adjust deliverables, closeout

stories.

Hybrid Development
Processes

Development process that uses both Agile and non-Agile practices in
conjunction with each other and is proven highly effective for some
development teams

Information Radiator

A visual display of information about an Agile project that can easily
be consumed without the need to interrupt anyone for status. Related
primarily to Kanban.

Inspect and Adapt

An Agile concept where teams evaluate a project by looking at the
product, listening to each other’s feedback and ultimately improving
the process or changing course.

Iron Triangle

A concept of project management to visualize a situation where all
three project constraints of cost, scope, and time are fixed at the start
of the project. As the project progresses, no one constraint may
change without a change in at least one of the remaining two.

Iteration

A period of time in which software development activities take place
and result in delivery of working software. Traditionally lasting
between 2 and 4 weeks, iterations may be as short as 1 week or as
long as 3 months. Similar in nature and definition as a “Sprint.”

Kanban
A conceptual approach to Agile development based on Lean Software
Development principles and has three main components: visual
system for managing work, limits work in progress, and work is pulled

rather than pushed through the system.

Lean

An umbrella term for a powerful combination of techniques to
maximize customer value while minimizing waste and achieving
continuous flow through a sustainable culture of continuous
improvement. Lean is a term used in the U.S. for what was originally
created as the "Toyota Production System". Also referred to as Lean
Office, Lean Production, Lean Thinking, Lean Enterprise, etc.

Lean Software Development

A programming concept that focuses on optimizing efficiencies for
development and minimizing waste. According to Mary Poppendieck,
10 rules of Lean programming include: eliminate waste, minimize
artifacts, satisfy all stakeholders, deliver as fast as possible, decide as
late as possible, decide as low as possible, deploy comprehensive
testing, learn by experimentation, measure business impact and
optimize across organizations.

Pair Programming

Process in which two developers work together at a single
workstation, where one is responsible for typing code and the other
for reviewing each line of code as it is typed in.

Parallel Development

Parallel development occurs whenever a software development
project requires separate development efforts on related code bases.
For example, when a software product is shipped to customers, a
product development team may begin working on a new major feature
release of the product, while a product maintenance team may work
on defect corrections and customer patch releases of the shipped
product. Both teams begin work from the same code base, but the
code necessarily diverges. Frequently the code bases used in parallel
development efforts must be merged at some future date, for
example, to ensure that the defect corrections provided by the
product maintenance team are integrated into the major release that
the product development team is working on.

PDCA

The four stages of a cycle of continuous improvement popularized by
W. Edward Deming.

o Plan - Define the problem, methods to measure it,
and obtain management support for future stages.

o Do - Do the tests and prototypes to understand the
problem, establish root causes, and investigate
alternatives.

o Check - Analyze the results of the "do" stage to
determine if a solution effectively resolves the
problem while breaking nothing else.

o Act - Fully implement the identified solution.

Planning Poker

A consensus-based technique for estimating; mostly used to estimate
effort or relative size of tasks in software development. Planning
Poker is useful for building team cohesion and for fostering self-
organizing teams.

Product Backlog

A prioritized list of user stories and defects in order from most
valuable to least valuable for a system. Backlogs include both
functional and non-functional user stories as well as technical team-
generated stories. Owned by the Product Owner.

Product Owner A role originating from Scrum, but has now been widely adopted

independently of Scrum. A product owner manages the product
backlog, addresses questions that arise during development and
signs off on work results. The product owner guides the team with
what should be done and when the final product should be shipped.
The Scrum team then balances out the product owner’s decisions by
deciding how much work should be involved in an individual sprint
and estimating the amount of time necessary to complete the task.

Refactoring

The practice of continuously improving the usability, maintainability,
and adaptability of code without changing its behavior. Refactoring
makes it much easier to add new and unanticipated functionality.
Refactoring has the disadvantage that it takes extra effort and
requires changing the code. Refactoring is, at times, used as a
method of reducing technical debt.

Release

An increment of potentially shippable product from the development
team into routine use by customers. Releases typically happen when
one or more sprints has resulted in the product having enough value
to outweigh the cost to deploy it. A release balances functionality,
cost, and quality requirements against date commitments.

Release Management

Release management comprises a broad set of activities in software
development organizations that center on ensuring that software is
ready to be released to customers. Release management generally
entails defining the functionality required to release to customers, a
target date at which a release will be made and success criteria
related to determining if the product is ready to release.

Release Plan
A document describing scheduling, activities, resources and
responsibilities related to a particular release.

Retrospective

A meeting held at the end of every sprint to reflect on what went well
during the sprint and what can be improved upon during the next
sprint. Sprint retrospectives are valued as necessary parts of
inspecting and adapting, and allow development teams to plan for
future output.

Sashimi

An Agile concept of delivering value in slices rather than in
layers/stages. An Agile Story is sashimi because it can be proven it is
done. It is not possible to prove that a requirements document is
done.

Scrum

Agile development project management framework based around
sprints and is generally comprised of a Scrum Team, Product Owner
and Scrum Master. The framework of Scrum leaves most
development decisions up to the self-organizing Scrum team, where
project decisions are reached by team consensus. Scrum was
originally developed to guide complex software projects. Scrum
delivers incremental iterative time-boxed sprints that deliver value
early and often.

Scrum Master

Person trained to facilitate daily Scrum meetings, remove
impediments, oversee the team’s progress through the process and
track Scrum team updates. The Scrum Master is responsible to
enforce the principles and rules of engagement that a Scrum Team
has agreed to put in place.

Self-Organizing

A team, usually found in Scrum, that manages itself through various
means of communication and reoccurring structured meetings. Self-
organizing teams solve development issues together as a whole and
decide the best solution based on input, abilities and experience of
the various team members.

Spike

Timeboxed investigation of feasibility via a basic implementation
experiment or prototype to test out new, unknown, risky or complex
technical solutions. The result of a Spike is to inform future
implementation decisions.

Sprint
A Scrum-specific term used to describe an Iteration; although the
term is widely used in other Agile approaches.

Sprint Backlog

The plan for a development team that maps out the activities, tasks
and labor estimates to implement the User Stories planned for
completion in an upcoming sprint.

Sprint Planning

A meeting for Scrum Teams, Scrum Masters and Product Owners
where the Product Owner describes priority features to the team. The
Scrum Team gets enough of an understanding about the tasks
discussed that they are able to choose which ones to move from the
product backlog to the sprint backlog.

Sprint Review

In the sprint review, teams go over what stories were completed
during the iteration and demonstrate those stories for stakeholders
and the product owner.

Stakeholder
Any party that has an interest in the product/service produced by an
organization's value stream.

Stakeholder Value

The worth of the stakeholder's interest in the product/service
produced by an organization's value stream. Sometimes used
interchangeably with customer value.

Stand-up

Daily Meetings that are meant to quickly and efficiently resolve
obstacles that any team members may be experiencing.

A Stand-up meeting is no more than 15 minutes, focused on
answering the questions: “What did you do since we last met? What
will do before we meet again? And what obstacles are or may block
your ability to meet that commitment?”

Specific discussions that need to take place after the Stand-up
meeting between team members are identified but tabled for follow-
up discussion after the Stand-up.

Story Points

Relative scale of effort required by a team to implement a user story.
A method for estimating the size of an Agile story used as an
alternative to estimating the story in hours. Story points compare one
story to another to determine a relative size and then assign points
denoting that size.

Task

A discrete unit of work. Agile stories are broken down into a
collection of tasks that must be performed to complete the story in
one sprint. Tasks are typically sized to represent 4 to 8 hours of
effort.

Task Board
A physical or electronic board representing the state of tasks in a
current sprint, often divided into "to do," "in progress" and "done."

Test Driven Development
(TDD)

An approach to development which combines “test-first”
development practices where you write a test before you write just
enough production code to fulfill that test and refactoring.

Theme
A collection of Agile stories that have a common affinity. A theme may
contain several Epics and many User Stories.

Timeboxing
The practice of constraining the amount of time for performing any
activity. Examples include iterations, spikes and stand up meetings.

Unit Testing
Tests that exercise small amounts of isolated functionality intended to
validate that the written code meets basic acceptance tests.

User Stories

Used with Agile methodologies for specifying requirements and
presented as an informal statement of the requirement in natural,
simple-to-understand language.

Typically stated in a format similar to:

o As a <user or role>,
o I want <business functionality>,
o So that <business benefit>.

User Stories also detail Conditions of Satisfaction (defining “done”)
and Acceptance Criteria (defining “done right”)

Value Points
Relative scale of business value expected to be delivered by a User
Story or feature.

Velocity

The velocity of a team is the number of story points associated with
stories that are finished over a given period of time(typically an
Iteration or Sprint). For instance, if the team completed 8 stories that
were each 5 points during a four week sprint, then their velocity is 40
story points every four weeks.

Waterfall

Model of a software development process in which progress flows
downwards through phases of conception, initiation, analysis, design,
construction, testing and maintenance. Similar phases may be
defined as define requirements, design the solution, develop, test,
and implement.

XP (Extreme Programming)

"Extreme Programming," one implementation of the Agile
methodology that focuses on producing the simplest coding situation
for application requirements and includes practices such as pair
programming, incremental design and continuous integration.

