
DevSecOps
PL AYBOOK

www.cprime.com | learn@cprime.com | (877) 753-2760 | © Cprime Inc. All rights reserved.

A Guide by Carlos “Kami” Maldonado

In the IT industry, practicing DevOps has become a predominant way to improve the efficiency of
teams. DevOps isn’t just a trendy buzzword; it’s a cultural movement. Adopting its methodologies will
help your organization in terms of both performance and outcomes. Its real, demonstrable results
make it understandable why DevOps has taken the world by storm.

But is DevOps missing a key element?

Yes—in this paper, we’ll argue it is missing something. Security is that missing piece. And because
security is so important, we’ll first explain why you should make it a primary consideration. But you’ll
need the “how” once you know the “why.” So we’ll then give you a thorough road map, showing you to
path to DevSecOps. This will allow you to enjoy all the benefits of a DevOps transition without leaving
out the vital aspect of security.

3

SECURITY IN THE SOFTWARE DEVELOPMENT LIFE CYCLE
Companies undergoing a DevOps transformation often underestimate the security
aspects behind software creation. Security checks traditionally happen at the
end of the development process, and they’re a gateway before a product goes live.
Such behavior is not compatible with the DevOps principle of “deploy often.” Your
manual security checks get in the way of continuous integration and continuous
deployments. It creates a gap; DevOps increases business velocity but security is
left behind (which we’ll talk more about in the next section).

DevSecOps, as opposed to just DevOps, changes this way of working. Whereas
security was previously just an afterthought before deploying to production,
DevSecOps makes security an integral part of your development and
operations practices.

The Proportion of Security Experts to Developers
According to Sonatype’s 2018 DevSecOps Community Survey, there’s only one
security expert for every 100 developers in an organization. That’s a staggering
disproportion, and no matter how fast a security team is, they won’t be able to keep
up with the velocity resulting from DevOps practices.

In the DORA’s 2018 Accelerate: State of DevOps report, James Wickett, head of
research at Signal Sciences, estimated that there’s one InfoSec person per 10
infrastructure people per 100 developers in large companies. Wickett also observed
that security is more of an afterthought at companies, involved at the end of the
delivery life cycle. And he rightly points out that security improvements at that
stage aren’t just agonizing for the employees involved—they’re also expensive for
the business.

Meanwhile, all findings in DevOps research emphasize one thing: everyone needs the
“sec” in DevSecOps, and far too few companies prioritize security enough to prevent
disaster later.

Why It Makes Sense to Automate Security
DevSecOps means embedding security checks in every phase of your software
development life cycle. But deploying code frequently makes it harder to implement
preventive and reactive security measures. The logical path, then, is automating
your security procedures. This way, there won’t be a person acting as the gateway
but rather an automatic check with precise requirements.

https://www.sonatype.com/2018survey
https://devops-research.com/2018/08/announcing-accelerate-state-of-devops-2018/

4

YOUR ROADMAP TO DEVSECOPS
Hopefully at this point, you realize how important security is to consider in a
DevOps operation—or at least how punishing it can be if you neglect security. So,
what comes next? How do you begin to turn your DevOps organization into a true
DevSecOps organization? Well, you’re in luck: the rest of what we discuss here will
serve as your roadmap to DevSecOps.

First, Learn and Promote Core Concepts
As is the case with every cultural change, it’s important that you can count on
support from management. And support means more than a single email blast from
the CEO talking about how exciting she finds the new transition to DevSecOps.
Organizations need to align budget and strategic decisions with this new way of
doing things. People need the means to learn through books, training, internal
meetups, and conferences.

What’s more, managers and technical leads need to carry a consistent and coherent
message about the new change. They should make it easy for teams to learn about
their new DevSecOps ways. And of course, managers should let their reports ask
questions and express concerns in private, without any worry of being judged.

If you’re working against a particularly stubborn culture, seek out early adopters in
each of your developer teams and convince them of the importance of DevSecOps.
Though conventional wisdom says change comes from above, these early-adopter
developers could be your allies, triggering a groundswell of change from an
unexpected part of the organization.

Use the Concept of “Security As Code” As a Stepping Stone
Following suit from “infrastructure as code” in DevOps, “security as code” will
be your stepping stone to achieve DevSecOps. Every security check needs to
be reproducible and available in the form of code to all interested parties in the
organization. And it needs to come from a single source of truth, like a Git repository.

Implementing security as code will enable developers to:

•	 Learn the nature of security checks
•	 Know earlier about security requirements

•	 Start thinking like an attacker, when the situation calls for it

And security experts will benefit from:

•	 Decreasing the execution time of their assessments
•	 Increasing visibility and usability of their tools for the rest of the teams
•	 Sharing their source of checks instead of relying on other team members

5

YOUR ROADMAP TO DEVSECOPS CONTINUED
Automate Security Testing
Having security checks automated in your software delivery pipeline means that
everyone triggers them each time something happens—like on every commit or
every merge request. It will enable developers to know if any new code they’ve
added complies with their current security policies. This is a way to reduce
friction between security professionals and developers. That’s because checks are
automatically performed by machines, not by people who could be perceived as
gatekeepers who hinder you from completing work.

Self-Service Security Assessments
When DORA asked organizations about the characteristics that impacted software
delivery performance, forty-six percent included implementing on-demand self-
service of computing resources as one of the top five. Now, let’s apply this lesson to
the security field. If people need to submit a ticket in order for a security check to
happen, they’ll avoid checking their compliance. Developers and operators need to
have the independence to perform security reviews on their own work and see their
results with transparency.

Shift Left to Improve Early Discovery
Shift left. It’s a well-known pattern from DevOps practices. In fact, a 2002 report
from the National Institute of Standards and Technology supports the idea that
shifting left can help any organization. Numbers in that report point out that the
relative cost to repair a defect (in person-hours) increases by a factor of five to
thirty when you discover bugs later in the software development life cycle.

As you can see in the table below, the earlier you find a defect, the cheaper it will
be to fix. A software defect found after a product release could cost you up to thirty
times more resources to fix.

(Table adapted from NIST report)

Example of How Much It Could Cost to Repair Defects,
Depending on the Stage in Which It’s Found

Requirements
Gathering/
Analysis/

Architectural Design

Coding/Unit
Test

Integration and
Component/

RAISE System
Test

Early Customer
Feedback/Beta

Test

Post-
Product
Release

1X 5X 10X 15X 30X

https://devops-research.com/2018/08/announcing-accelerate-state-of-devops-2018/
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf

6

NEXT, SET EXPECTATIONS FOR YOUR TEAM
If you’re following this roadmap to DevSecOps, the next thing you should do is set clear
expectations for any new rules to which you’ll hold your source code. And don’t forget to
keep your developers well informed about the new rules of engagement. The Open Web
Application Security Project (OSWAP) publishes several documents every year, but there
are two particular documents to review. These are:

•	 The OWASP Application Security Verification Standard Project

•	 The OWASP Proactive Controls

The first document shows you how to take inventory of your organization’s current
security status. The second document gathers a comprehensive set of good practices
and recommendations to improve security in the software you develop—and the
infrastructure in which you run it.

Capture Baseline Data
As a result of analyzing your software development pipelines and environments using
OWASP’s Application Security Verification Standard, you’ll have a better idea of your
current security status. Then you’ll need to weigh the needs of your business and
prioritize tasks to mitigate your weaknesses. But new work shouldn’t go exclusively to
your operations and security teams; it should be developers’ work too. This is the shift
in mindset that needs to happen at your company: security needs to become a concern
across your whole organization.

Review OWASP Proactive Controls
Now that we’ve established that security is everyone’s concern, it naturally follows that
every developer in the organization should be aware that they need to build security
into their code. Security experts might be familiar with the OWASP Proactive Control
2018, which is updated every year. These are a set of guidelines organized in order of
importance. The updated list for 2018 is:

•	 Define security requirements

•	 Leverage security frameworks and
libraries

•	 Secure database access

•	 Encode and escape data

•	 Validate all inputs

•	 Implement digital identity

•	 Enforce access controls

•	 Protect data everywhere

•	 Implement security logging and
monitoring

•	 Handle all errors and exceptions

•	 Use these criteria to learn
best practices so your teams
can write secure software
that in turn operates in secure
environments.

https://www.owasp.org/images/b/bc/OWASP_Top_10_Proactive_Controls_V3.pdf
https://www.owasp.org/images/b/bc/OWASP_Top_10_Proactive_Controls_V3.pdf

7

PERFORM THREAT MODELING
A third group activity that you’ll need is threat modeling. Its purpose is identifying,
understanding, and recording threats in order to protect something valuable to your
business.

This is when your team should review your software and infrastructure design, mimicking
the way that an attacker would analyze it. A threat model usually includes:

•	 A model of the system you want to protect

•	 Assumptions to challenge

•	 Potential threats to the system

•	 Actions to take against each potential threat

•	 Methods to validate the model and risks

•	 Ways to verify your success

You’ll need several iterations before you grasp a comprehensive view of your software
development cycle and the environments you maintain. It’s also a continuous process
because every time you add code or change a service version, you’re changing your
model by adding or removing risk factors.

Pick a Reference Architecture
Sonatype has a relevant document with around fifteen different DevSecOps reference
architectures from many sources in the industry, ranging from the USA’s Department of
Defense to Jim Bird’s DevSecOps to Accenture to AWS. So that’s where you can begin
to pick a reference architecture—by researching how others do it. When you’re ready to
move forward, the next step is to evaluate the size of your company and how your team
works. From there, you can design a workflow that will allow you to deliver value without
slowing you down.

https://www.oreilly.com/library/view/devopssec/9781491971413/ch04.html

8

PERFORM THREAT MODELING CONTINUED
Design Your DevSecOps Workflow

For the sake of simplicity, TeachEra.io’s workflow shown below will be used for reference:

From TeachEra.io’s DevSecOps Studio (license)

On the left, we have a generic DevOps pipeline, similar to what you might have
implemented in your organization. In order to decrease disruption to current processes,
my recommendation is to insert AppSec steps, like what’s pictured on the right.

Each AppSec step should be relevant to the DevOps phase before it. For example,
dependency checks and static application security checks should be done during code
analysis—or any previous step in the pipeline. Any penetration testing or simulated attack
should happen in a test environment, as similar as possible to production.

SELECT TOOLS FOR EACH PURPOSE
Each phase of the software development life cycle has a component consistent with a
stage in your pipeline. I’ll describe six different tools, which will give you a place to start.

9

Tool One: Automated Dependency Checks
Software and its dependencies could be compared to living beings that evolve over time.
While developing software, reusing others’ libraries is the shortest path to achieving your
goals. A modern JavaScript program has a median of fifty-four transitive dependencies.
Is your team going to review all these dependencies one by one manually? I should
hope not!

In contrast, you could consider reviewing dependencies using a software composition
analysis tool from OWASP. This will allow you to execute a dependency check on all your
code. You can use it as a Jenkins plugin, a CLI command, a Maven plugin, or a Docker
container. It will create comprehensive reports, along with the relevant common
vulnerabilities and exposures (CVEs) identifiers for vulnerable frameworks it found
implemented in your code.

Tool Two: Static Application Security Testing
These are the kind of checks you perform on applications before they’re even executed
for the first time. You could perform tests like syntax, style, and lint checks. But there
are also ways to check for security vulnerabilities. Choices will vary depending on your
programming language. For example, if you program in Ruby, there’s Brakeman
and RuboCop.

A couple of projects worth mentioning are Find Security Bugs and SonarQube. They’re
popular in the Java-sphere. SonarQube Scanner for Maven can be configured to analyze
source code going automatically through Jenkins so that a “waitForQualityGate” step will
pause the pipeline until SonarQube completes its analysis. Then it returns quality gate
status to your Jenkins pipeline.

Tool Three: Dynamic Application Security Testing
Dynamic application security testing is also known as “black box” testing. It’s performed
after your web application has reached some level of compliance to be available in an
internal environment. At that point, you can start testing it against cross-site scripting
and SQL injection. Creating the payloads to automate this type of testing could be
complicated, and what you choose to do will heavily depend on your application
functionalities.

I’ll provide the names of a couple tools that you can integrate into your pipeline. Both
are open-source, but I recommend getting help from someone already familiar with the
context to operate them.

•	 One option is OWASP Zed Attack Proxy as a Jenkins plugin, which can help
you automatically find security errors in your web applications while you’re
developing and testing.

•	 The other option is w3af, which will allow you to check web applications for 200+
common vulnerabilities, including cross-site scripting, SQL injection, and OS
commanding.

http://kodu.ut.ee/~riivokik/pubs/msr2017dependency.pdf
https://github.com/jeremylong/DependencyCheck
https://github.com/jeremylong/DependencyCheck
https://find-sec-bugs.github.io/
https://www.sonarqube.org/downloads/
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
https://plugins.jenkins.io/zap
https://github.com/andresriancho/w3af

10

It’s worth noting that if your organization implements Jira to handle internal
requirements, Zed Attack Proxy has a feature that will create a Jira ticket for each
security issue that it finds.

Tool Four: Fuzz Testing
Fuzz testing is an automated software testing technique that involves providing invalid,
unexpected, or random data as input to your computer program. Our purpose is to
monitor the program for events such as crashes and unhandled exceptions.

Fuzz testing usually implies six stages:

•	 Identification target programs to interfaces to fuzz

•	 Creation of fuzz data (malformed data)

•	 Delivery of fuzzed data to the application under test

•	 Monitoring the software for signs of failure

•	 Triaging results

•	 Identifying contributing factors, fixing bugs, and rerunning failures on analyze
coverage data (rinse and repeat!)

If you’d like to see more, you can take a look at Daniel Miessler’s set of fuzzing data
designed for different purposes.

Tool Five: Penetration Testing
Also known as pen testing, this is one of the most sophisticated types of security
checks. It simulates an orchestrated attack on an organization, with the organization’s
permission. The goal is to identify vulnerabilities and security issues so that you can
catalog them and slate them for further review. Developers, operations, and security
experts should work with these results to implement temporary or permanent fixes.

The quintessential ethical hacking tool—the most recognized name in the space—is
Metasploit. It’s multi-platform and runs on Linux, macOS, or Windows. What’s more, it
enjoys abundant documentation. And for those looking to include it in automated custom
workflows, the pro edition by rapid7 can be automated through “task chains.”

https://github.com/danielmiessler/SecLists/tree/master/Fuzzing
https://www.metasploit.com/download
https://www.rapid7.com/

11

Tool Six: Automated Security Attacks
For your last phase of security compliance in your software development cycle, you
should consider a fully automated and reproducible security attack. Let’s start by
describing how such a test with BDD-Security would work:

•	 BDD-Security is a Gradle project. That means you can import into a Java IDE, like
IntelliJ, NetBeans, or Eclipse.

•	 These simulated attacks will navigate your website, just like a user on the other
end of the browser, through Selenium scripts.

•	 These checks integrate with either OWASP Zed Attack Proxy or Tenable’s Nessus.

•	 Attacks will run independently as a Gradle JUnit test, from an IDE or inside a
Jenkins CI server.

•	 Their output will be HTML Cucumber reports, JSON Cucumber results, and JUnit
results.

If your organization uses techniques like test-driven development, it will be easier for
developers to implement BDD-Security as their security testing framework.

L AST IN THE CYCLE: IMPLEMENT AND KEEP ITERATING
By taking a cue from practices in this white paper, you should have at least a basic
workflow with comprehensive security checks in each phase of your software
development cycle. This will provide you with enough baseline data for your DevSecOps
strategy. Vulnerabilities, test coverage, surface tested, and pending bugs to fix are some
useful measurements that could help you to see progress after each new iteration.

Train, Implement, Measure, and Compare
As you may know, any digital transformation process is slow. User adoption takes time.
But if you leverage training initiatives and show early results to influential engineers
and managers, you’ll be able to use this as a justification for more budget. From there,
you’ll be able to train people in these practices and extend the reach of your DevSecOps
efforts.

Each new security check will provide new metrics, so you can measure and compare with
your security check history. You’ll be able to look at past performance, compared with
your current performance, and show business stakeholders how your security practices
have evolved and security incidents have been reduced.

https://www.seleniumhq.org/

12

More Opportunities for Improvement
Once your DevSecOps workflow is mature enough and you have enough people involved,
there will be other activities that you will be able to implement. Here are just some of the
things you can have with a DevSecOps organization:

•	 Red teams. These mimic external attackers that want to make system vulnerabilities
evident—including those vulnerabilities found in proof-of-concepts—so they don’t
leak into final products.

•	 Blue teams. These respond to external attackers by implementing temporary or
permanent fixes to improve security.

•	 An evangelist in each team. These are volunteers who are enthusiastic about
security, so they continuously promote a mindset that values InfoSec.

•	 Bug bounties. This is a way to motivate actors in the wild, under strict disclosure
guidelines, so they warn you about vulnerabilities with a certain degree of formality.
A good example is the FOSSA bug bounties program that currently exists in Europe.

•	 Blameless postmortems. These are a judgment-free review of actions by your team
during an outage incident, and they’re a useful learning resource when you have
trouble in production. 	

	 Specifically, a blameless postmortem will involve an engineer in charge of the
incident reviewing what happened in a storytelling format, with input from every
actor. The purpose is to find out what led people to make decisions. As a result, you’ll
improve your incident response process. With blameless postmortems, I certainly
want to stress some key facts:

•	 Every incident is an opportunity to learn about your team’s incident response
capacity.

•	 You cannot attribute a single factor as the root cause for an incident. There will
always be many contributing factors.

•	 Human error can’t be a reason behind an incident. You cannot forbid people to
make mistakes. System design should be resilient in the face of human error.

L AST RESORTS: GETT ING OVER THE IN IT IAL
DEVSECOPS HURDLES
Hopefully the information we’ve shared here has given you ideas about how to include
security in your current DevOps practices. If your organization wants to include security
checks in your software development life cycle, you could probably use a hand from
external consulting or training to guide your teams in the process. It’s an opportunity to
evaluate offerings in this field, like Cprime Learning’s DevSecOps Boot Camp.

https://juliareda.eu/2018/12/eu-fossa-bug-bounties/

13

One last note: if your company is too small to hire full-time security experts, consider
bringing one in! Don’t hesitate to hire an external consulting firm to help you design
your DevSecOps strategy, especially as you’re first getting started. Cprime is a global
consulting firm ready to help your transforming business get in sync. There’s no shame in
taking guidance from those who know best how to implement DevSecOps.

We wish you the best in your transition to implement DevSecOps. Be patient and
flexible, react fast, prioritize with a cool head, and keep moving towards being a
secure organization.

14

DEVSECOPS BOOT CAMP

COURSE OVERVIEW

Led by a senior expert, teach your teams
how to improve the DevSecOps practice –
from guiding principles to daily technical
execution.

This DevSecOps training boot camp is
the most practical, in-depth educational
solution for teams who want to
understand, apply and improve their
skills on “shifting left” in IT security.
This expert-led boot camp focuses on
the principles, processes, and technical
skills necessary to make security and risk
profiling a front-end priority: embracing a
“quality first” mindset.

YOU WILL LEARN HOW TO:

•	 Assess, specify and automate much of
the work associated with application
security

•	 Bridge the typical functional silos
in IT that prevent proactive security
practices.

•	 Translate common risks into technical
use cases and software requirements.

•	 Apply “security first” engineering and
testing practices throughout the entire
application pipeline

CUSTOM ONSITE
8+ TEAM MEMBERS

INDIVIDUAL
$2450.00

visit www.cprime.com
or call (877) 753-2760

3 Day Classroom Session | 3 Day Live Online | Custom Onsite

Request a quote online
 or call (877) 753-2760

For more information on our DevOps curriculum, please visit:
www.cprime.com/learning

http://www.cprime.com

ABOUT THE AUTHOR
Carlos “Kami” Maldonado is a Senior System Administrator
with BOND Enterprises and a Digital Transformation
Trainer with Cprime Learning. Kami has over 16 years of
experience in DevSecOps, Site Reliability Engineering,
Scrum Master, Technical Writing, and Cloud Architecture.
Kami has on the ground experience with production
environments, managing thousands of instances running
java services, in transition to micro-services.

ABOUT CPRIME
An Alten Company, Cprime is a global consulting firm helping transforming businesses get in
sync. Cprime is the partner of choice for Fortune 100 companies looking to achieve value and
agility. We help visionary business leaders compose solutions, execute implementations,
and exceed against business goals. With our key partnership recognitions, including
Atlassian Platinum, AWS Advanced, and SAFe Gold SPCT partner, our industry-leading
software and services work in synergy to deliver transformations.

Visit us at www.cprime.com

http://aspetraining.com

