
Encyclopedia
of Agile

An Indexed glossary of terms used in Agile Software Development

© 2011 cPrime, All rights reserved. Compiled By Kendrick.Burson@cPrime.com

The intention of compiling this Encyclopedia of Agile was to create a document that can be used both as an
offline reference, and as an online linked reference to some of the top thought leaders in the software
industry.

The terms and definitions found in this encyclopedia are public domain. The wording of the definitions were
taken from the following sources, with reference links to these sources for more in depth coverage of the
terminology definitions and etymology.

While the content is not new, or original, I hope that you find the various indexes and references helpful in
your search for understanding of all things Agile.

This document is copyrighted for it’s form and function, while the most of the internal content is public
domain (available on multiple sites). Most definitions contain reference links to the source of the content, both
to give the hosting site credit and to provide a link for more in depth content than is desired in this document.
Where content is unique the original source is cited to give the original author credit.

Where images appear their original source is cited, when possible, to give the original authors credit.

The following domains were referenced in the collation of this document.

Agile Glossary

http://www.wikipedia.org/

Agile Glossary

ScrumAlliance

Scrum.org

Agile Glossary

Agile Glossary

© 2011 cPrime, All rights reserved. Compiled By Kendrick.Burson@cPrime.com

http://www.cprime.com/store-download/67cda9cb79de96214eb6e2dab4ae331e/agile-scrum-glossary.pdf
http://www.cprime.com/store-download/67cda9cb79de96214eb6e2dab4ae331e/agile-scrum-glossary.pdf
http://www.wikipedia.org/
http://www.wikipedia.org/
http://www.solutionsiq.com/resources/agile-glossary/
http://www.solutionsiq.com/resources/agile-glossary/
http://www.scrumalliance.org/
http://www.scrumalliance.org/
http://www.scrum.org/
http://www.scrum.org/
http://www.accurev.com/wiki/agile-glossary
http://www.accurev.com/wiki/agile-glossary
http://www.netobjectives.com/glossary/
http://www.netobjectives.com/glossary/

Scrum Roles
 ScrumMaster
 Certified ScrumMaster
 Product Owner
 Team
 Delivery Team
 Cross-Functional Team

Scrum Activities
 Planning
 Release Planning
 Sprint Planning
 Backlog Grooming
 Sprint
 a.k.a Iteration
 Daily Scrum
 a.k.a. Daily Standup
 Sprint Review
 a.k.a Demo
 Retrospective
 a.k.a Kaizen

Scrum Artifacts
 Backlog
 Product Backlog
 Sprint Backlog
 Burndown Chart
 Burnup Chart
 Action Items
 Parking Lot
 Product Vision Statement
 Team Agreements
 Definition of Done
 Working Agreements

Types Of Stories
 User
 Technical
 Defect
 Spike
 Tracer Bullet
 Research

Scrum Terminology Index

© 2011 cPrime, All rights reserved.! i

http://www.solutionsiq.com/resources/glossary/bid/56552/ScrumMaster
http://www.solutionsiq.com/resources/glossary/bid/56552/ScrumMaster
http://www.solutionsiq.com/resources/glossary/bid/56616/Backlog
http://www.solutionsiq.com/resources/glossary/bid/56616/Backlog

A! 1
Acceptance Testing 1
* Adaptive 1
* Affinity Estimating 1
* Agile 2
Agile Development Practices 2
Agile Estimation 2
Agile Manifesto 2
Agile Methods 3
Agile Methodology 3
Agile Modeling 3
Agile Planning Basics 4
Agile Project Management 4
Agile Software Development 4
* Agile Unified Process 4
* Agilista 4
* Agility 5
Alignment 5
ALM 5
* Anchoring 5
Application Lifecycle Management 5

B! 5
Backlog 5
Backlog Item 6
Backlog Item Effort 6
Backlog Grooming 6
Big Ball of Mud 6
Big Visible Charts 7
* Blocked 7
Bottleneck 7
Branching 7
Breaking the Build 7
Build Process 8
Burn-Down Chart 8
Burn-Up Chart 8
Business Alignment 9
Business Value 9

C! 9
Capacity 9
CANI 9

* Card-Conversation-Confirmation 10
Certified ScrumMaster 10
Chicken 10
Code Smell 10
Colocation 11
Continuous Integration 11
Cross-Functional Team 11
* Crystal 11
Customer 11

D! 12
Daily Scrum 12
Daily Standup 12
Defect 12
Definition of Done 12
Delivery Team 12
* Dependency Injection Principle 13
Design Pattern 13
Distributed Development Team 13
Distributed Scrum 13
Domain Model 13
DSDM 14
* Dynamic Systems Development
Method 14

E! 14
* Earned Value Chart 14
Emergence 14
Empiricism 14
Epic 14
EssUP 14
* Essential Unified Process: 15
Estimation 15
* Estimate to Complete Chart 15
Extreme Programming 15

F! 16
Fail-Fast 16
Feature 16
FDD 16
* Feature Driven Development 16
Fibonacci Sequence 16
Flow 16

Agile Terminology Index

© 2011 cPrime, All rights reserved.! ii

* Forked Development 16
Fog Of War 17
* Functional Test 17

G! 17

H! 17
* Ha 17

I! 17
Impediment 17
INVEST 18
* Integration Test 18
Inspect and Adapt 18
* Interface Segregation Principle 18
* Iron Triangle 18
IT Alignment 18
Iteration 19

J! 19

K! 19
Kanban 19
* Kata 19
* Kaizen 19

L! 20
Lean Software Development 20
Levels of Planning, 5 20
* Liskov Substitution Principle 20
* Load Test 20

M! 21
Minimum Marketable Features 21

N! 21

O! 21
OpenUP 21

* Open Unified Process 21
* Open Closed Principle 21
* Osmotic Communication 21

P! 21
Pair Programming 21
Parallel Development 22
* Pareto Principle 22
* Parking Lot 22
Pattern 22
Performance Test 22
Pig 22
Planning 23
Planning Game 23
Planning Poker 23
* Pragmatic Programming 24
* Predictive 24
* Prioritization 24
* Process Framework 24
Product 24
Product Backlog 24
* Product Backlog Item 25
Product Owner 25
* Product Roadmap 25
Product Vision 25
* Productivity 25
* Profiling 26

Q! 26

R! 26
* Reactive 26
Refactoring 26
Release (Software) 26
Release Backlog 26

TBD!26
Release Management 27

TBD!27
Release Plan 27
Release Planning 27
Research Story 27

Agile Terminology Index

© 2011 cPrime, All rights reserved.! iii

TBD!27
Resources 27

TBD!27
Retrospective 27
* Ri 28
* ROI 28
* Ron Dori 28

S! 28
* Schedule 28
* Scope 28
Scrum 28
ScrumBut 29
ScrummerFall 30
ScrumPlus 30
Scrum Team 30
ScrumMaster 30
Scrum Snowman 31
Self-Organization 31
* Shu 31
* Shu-Ha-Ri 32
* Sidebar 32
* Single Responsibility Principle 32
Software Quality Metrics 32
* SOLID OOD Principles 33
Spike 33
Sprint 33
Sprint Backlog 33
Sprint Burn-Down Chart 33
Sprint Planning Meeting 34
Sprint Review 34
Stakeholder 34
Standup Meeting 34
Story 35
Story Points 35
* Stress Test 35
* Swarming 35

T! 36
Task 36
Task Board 36
* Task Breakdown 36

Team 36
Technical Debt 37
* Technical Story 37
Test Automation 37
Test-Driven Development 37
Time-box 37
* Tracer Bullet 38
* Transparency 38
* Tuckman Model 38

U! 38
Unit Testing 38
User Story 38

V! 39
Velocity 39
* Velocity Tracking 39
Vision 39
Voice of the Customer (VOC) 39

W! 40
Wiki 40
* WIP 40
* Work Breakdown Structure 40
Work in Progress (WIP) 40

X! 40
XP 40

Y! 40
* YAGNI 40
* YAGRI 40

Z! 41

Reference Articles and Papers ! 42

Agile Architectures

Agile Architecture! 42
by Chris Sterling @ SolutionsIQ, CST

Agile Terminology Index

© 2011 cPrime, All rights reserved.! iv

by Mickey Phoenix @ SolutionsIQ, CSM

Distributed Scrum

Successful Distributed Agile Team Working
Patterns! 42
by Monica Yap @ SolutionsIQ, CSM

Case Study: Implementing Distributed
Extreme Programming! 42
by Monica Yap @ SolutionsIQ, CSM

Daily Scrums in a Distributed World! 42
by Kevin Thompson @ cPrime.com, CSM, CSP,
PMP, PhD

Meta-Scrum

Establishing and Maintaining Top to Bottom
Transparency Using Meta-Scrum! 42
by Brent Barton @ SolutionsIQ, CST

Agile Adoption

Introduction to Scrum! 43
by Kevin Thompson @ cPrime.com, CSM, CSP,
PMP, PhD

Scrum as Project Management! 43
by Kevin Thompson @ cPrime.com, CSM, CSP,
PMP, PhD

The Agile Story: Scrum Meets PMP! 43
by Crystal Lee @ cPrime, PMP, CSM

When to Use Scrum! 43
by Kevin Thompson @ cPrime.com, CSM, CSP,
PMP, PhD

Agile Top-Down: Striking a Balance! 43
by Bryan Stallings @ SolutionsIQ, CST

Agile ROI Part I: The Business Case for
Agility! 43
by John Rudd @ SolutionsIQ

Agile ROI Part II: The Business Case for
Agility! 43
by David Wylie @ SolutionsIQ

Scrum in the Enterprise! 43
by Kevin Thompson @ cPrime.com, CSM, CSP,
PMP, PhD

How Uncertainty Works! 44
by Kevin Thompson @ cPrime.com, CSM, CSP,
PMP, PhD

The Price of Uncertainty! 44
by Kevin Thompson @ cPrime.com, CSM, CSP,
PMP, PhD

How Agile should your Project be?! 44
by Kevin Thompson @ cPrime.com, CSM, CSP,
PMP, PhD

Integrating Waterfall and Agile
Development! 44
by Shayan Alam @ cPrime.com, PMP

Rational Unified Process Best Practices! 44
by Crystal Lee @ cPrime.com, PMP,

Effective Retrospectives! 44
by Kendrick Burson @ cPrime.com, CSM,
CSPO

Transitioning From Time-Based to Relative
Estimation! 44
by Ilan Goldstein @ ScrumAlliance.org, CSM,
CSPO, CSP

5 Common Mistakes We Make Writing User
Stories! 45
by Krystian Kaczor @ ScrumAlliance; CSM,
CSP

Agile Project Dashboards! 45
Bringing value to stakeholders and top
management
by Leopoldo Simini @ ScrumAlliance; CSM,
CSP

Daily Stand-up, Beyond Mechanics: A
Measure of Self-Organization! 45
by Bachan Anand CSM, CSPO, CSP

Affinity Estimation for Release Planning! 45
by Monica Yap @ SolutionsIQ

Agile Terminology Index

© 2011 cPrime, All rights reserved.! v

Managing Risk in Scrum, Part 1! 45
by Valerie Morris @ SolutionsIQ

Product Owner Anti-Patterns! 45
by Monica Yap @ SolutionsIQ

Card-Conversation-Confirmation! 46
by Ron Jeffries, 2001

Recognizeing Bottlenecks in Scrum! 46
by Dhaval Panchal @ SolutionsIQ, CST

If At First You Don't Succeed, Fail, Fail
Again! 46
by Michael Tardiff @ SolutionsIQ, CSM, CSPO

What is the Definition of Done (DoD) in
Agile?! 46
by Dhaval Panchal @ SolutionsIQ, CST

How Should We Deal With the Mess That
Scrum Exposes?! 46
by Monica Yap @ SolutionsIQ, CSM, CSPO

The Afternoon ScrumMaster: Keeping Agile
Teams on Track! 47
by Dhaval Panchal @ SolutionsIQ

The Short Short Story! 47
by Paul Dupuy @ ScrumAlliance; CSM

Is Sustainable Pace Nice to Have? Think
Again!! 47
by Manoj Vadakkan CSM, CSP

Agile User Interface Design and Information
Architecture From the Trenches! 47
by Robin Dymond @ ScrumAlliance; CSM,
CSP, CST

Why Agile Does Matter in an Embedded
Development Environment! 47
by Bent Myllerup @ ScrumAlliance; CSM,
CSPO, CSP, CSC

The Illusion of Precision! 47
by Jim Schiel @ ScrumAlliance; CSM, CSP,
CST

Specialization and Generalization in Teams
! 47
by Bas Vodde @ ScrumAlliance; CSM, CSPO,
CSP, CST

The Importance of Self-Organisation! 47
by Geoff Watts @ ScrumAlliance; CSM, CSP,
CSC, CST

Manager 2.0: The Role of the Manager in
Scrum! 48
by Pete Deemer @ ScrumAlliance; CSM, CSP,
CST

Agile Terminology Index

© 2011 cPrime, All rights reserved.! vi

A
Acceptance Testing

Formal testing conducted to determine whether or not a system satisfies its acceptance criteria and to
enable the customer to determine whether or not to accept the system.

Reference: Wikipedia
Return To Glossary

* Adaptive
Return To Glossary

* Affinity Estimating

Affinity Estimating is a process to quickly estimate a large number of stories with high level SWAG
estimates relative to other stories in the same project. To popular tactics are to estimate using either
relative or absolute points.
Estimating with absolute units:

When estimating with absolute units the facilitator will quickly review several stories, asking the team for a
flash vote on size (1,2,3,5,8,13,Epic). each new story is compared to the previously voted stories for
equivalent size. Each vote is a flash vote, no more than 60 seconds discussion. As each story is estimated
the story card is dropped onto the specified stack. By the end of the exercise al stories have been assigned
and absolute story point size
Estimating relative units:

When estimating with relative units the delivery team works in parallel, each selecting a stack of stories and
sorting them on a wall, floor or table in relative size, smallest to largest. As the team members work
through their stacks they can reference stories placed by other team members, possibly moving those
stories to a new location in the continuum. After all stories have been placed and the team has reviewed
the relative sorting order of the entire backlog the continuum is translated to story points by marking equal
gradations along the continuum (1,2,3,5,8,13,Epic). A this point the team can reference the established
boundaries and move stories to one side or the other of a boundary line according to their best judgement.
By the end of the process all stories will be assigned a relative story point size.
See Also: Estimation, Release Planning
References: SolutionsIQ
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 1

http://en.wikipedia.org/wiki/Acceptance_testing
http://en.wikipedia.org/wiki/Acceptance_testing

* Agile
Return To Glossary

Agile Development Practices
Procedures and techniques used to conduct Agile software development. Although there is no canonical
set of Agile practices, most Agile practitioners adopt some subset of Scrum and XP practices.

Broadly speaking, any practice or technique that facilitates the values and principles set forth in the Agile
manifesto can be considered an Agile practice.

The most popular agile methodologies include:

• Extreme Programming (XP)
• Scrum
• Crystal,
• Dynamic Systems Development Method (DSDM)
• Lean Development
• Feature Driven Development (FDD).

All Agile methods share a common vision and core values of the Agile Manifesto.

Some other well-known agile software development methods include:

• Agile modeling
• Agile Unified Process (AUP)
• Essential Unified Process (EssUP)
• Open Unified Process (Open UP)
• Velocity Tracking

See Also: Agile Manifesto
References:
Return To Glossary

Agile Estimation
Agile estimation is a process of agreeing on a size measurement for the stories in a product backlog. Agile
estimation is done by the team, usually using Planning Poker.

Return To Glossary

Agile Manifesto
A philosophical foundation for effective software development, the Agile Manifesto was created by
representatives from Extreme Programming, Scrum, DSDM, Adaptive Software Development, Crystal,
Feature-Driven Development, Pragmatic Programming, and others sympathetic to the need for an
alternative to documentation-driven, heavyweight software development processes. It reads, in its entirety,
as follows:

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 2

We are uncovering better ways of developing software by doing it and helping others do it. Through this
work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.
Twelve principles underlie the Agile Manifesto, including:

1. Customer satisfaction by rapid delivery of useful software
2. Welcome changing requirements, even late in development
3. Working software is delivered frequently (weeks rather than months)
4. Working software is the principal measure of progress
5. Sustainable development, able to maintain a constant pace
6. Close, daily co-operation between business people and developers
7. Face-to-face conversation is the best form of communication (co-location)
8. Projects are built around motivated individuals, who should be trusted
9. Continuous attention to technical excellence and good design
10. Simplicity
11. Self-organizing teams
12. Regular adaptation to changing circumstances

Some of the manifesto’s authors formed the Agile Alliance, a non-profit organization that promotes
software development according to the manifesto’s principles.

References: Wikipedia, AgileManifesto.org, 12 Agile Principles
Return To Glossary

Agile Methods
See Agile Development Practices
Return To Glossary

Agile Methodology
Agile Methodology is an umbrella term for several iterative and incremental software development
methodologies.

See Agile Development Practices
Return To Glossary

Agile Modeling
Agile Modeling is a practice-based methodology for Modeling and documentation of software-based
systems. It

is intended to be a collection of values, principles, and practices for Modeling software that can be applied
on a software development project in a more flexible manner than traditional Modeling methods.

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 3

http://www.agilealliance.org/
http://www.agilealliance.org/
http://en.wikipedia.org/wiki/Agile_Manifesto
http://en.wikipedia.org/wiki/Agile_Manifesto
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html

Return To Glossary

Agile Planning Basics
The four basics of Agile planning are: Product Backlog, Estimates, Priorities and Velocity.

• Estimates answer the question: “How long will it take or how many can we do by a given date?”
• Priorities answer the question: “Which capabilities are most important?
• The Product Backlog answers the question: “What capabilities are needs for financial success?”
• Velocity answers the question: “How much can the team complete in a Sprint?”

Return To Glossary

Agile Project Management
The style of project management used to support Agile software development. Scrum is the most widely
used Agile project management practice. XP practices also include practices that support Agile project
management. Essential feature of Agile project management include:

• Iterative development cycles
• Self-organizing teams
• Multi-level planning
• Dynamic scope
• Frequent collaboration with customer and/or business sponsors

Related links: Wikipedia
Return To Glossary

Agile Software Development
Agile software development is a group of software development methodologies based on iterative and
incremental development, where requirements and solutions evolve through collaboration between self
organizing team, cross functional teams.

The development of software using Agile development practices and Agile project management.

Features of Agile software development include a heavy emphasis on collaboration, responsiveness to
change, and the reduction of waste throughout the development cycle.

Agile software development (ASD) focuses on keeping code simple, testing often, and delivering
functional bits of the application as soon as they're ready.

References: Wikipedia
Return To Glossary

* Agile Unified Process
Return To Glossary

* Agilista
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 4

http://en.wikipedia.org/wiki/Agile_Project_Management
http://en.wikipedia.org/wiki/Agile_Project_Management
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development

* Agility
Return To Glossary

Alignment
Organizations with production dependencies across department boundaries run the risk of falling out of
phase (or alignment). Alignment includes any actions or policies that exist so that a process or activity in
one section of the organization is congruent with the organization's or business unit's governing mission.
The lack of business/IT alignment is a chronic problem for many organizations and frequently the root
cause of systemic software delivery failure. Agile development practices are designed to address many of
the root causes of misalignment between IT and the business.

References: Wikipedia
Return To Glossary

ALM
See: Application Lifecycle Management
Return To Glossary

* Anchoring
Return To Glossary

Application Lifecycle Management
"Application Lifecycle Management (ALM) is a continuous process of managing the life of an application
through governance, development and maintenance." (Wikipedia)

When Agile software development is introduced into an organization it generally requires substantial
changes in the organization's ALM tools and policies, which are typically designed to support alternative
methodologies such as Waterfall.

References: Wikipedia
Return To Glossary

B
Backlog

The generic term for a repository of requirements (stories / work items) that define a system and it’s many
parts. The outermost scope of work defined is the Product Backlog, which defines all requirements/
features/defects/stories for a given product. A Product Backlog is subdivided into one or more Release
Backlogs. During Sprint planning the delivery team estimates the top most Backlog Items in the current
Release Backlog and assigns them to their Sprint Backlog where they are tracked and implemented for the
current sprint.

See also: Product Backlog Item, Task, Iteration, Sprint, Sprint Backlog Product Owner, Planning Game
References: Wikipedia

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 5

http://en.wikipedia.org/wiki/Business/IT_alignment
http://en.wikipedia.org/wiki/Business/IT_alignment
http://en.wikipedia.org/wiki/Application_lifecycle_management
http://en.wikipedia.org/wiki/Application_lifecycle_management
http://en.wikipedia.org/wiki/Application_lifecycle_management
http://en.wikipedia.org/wiki/Application_lifecycle_management
http://en.wikipedia.org/wiki/Scrum_(development)%23Product_backlog
http://en.wikipedia.org/wiki/Scrum_(development)%23Product_backlog

Return To Glossary

Backlog Item
See: Product Backlog Item
References: Wikipedia
Return To Glossary

Backlog Item Effort
Some Scrum practitioners estimate the effort of product backlog items in ideal engineering days, but
others prefer less concrete backlog effort estimation units. Alternative units might include story points,
function points, or "t-shirt sizes" (1 for small, 2 for medium, etc). The advantage of more vague units is that
they're explicit about the distinction that product backlog item effort estimates are estimates of effort, not
duration. Also, estimates at this level are rough guesses that should never be confused with actual working
hours (Note that sprint tasks are distinct from product backlog items and task effort remaining is always
estimated in hours).

References: SolutionsIQ:Backlog Item Effort
Return To Glossary

Backlog Grooming
Backlog grooming is both an ongoing process and the name for a meeting:

The process of adding new user stories to the backlog, re-prioritizing existing stories as needed, creating
estimates, and deconstructing larger stories into smaller stories or tasks.

A meeting or ceremony that occurs regularly within a team's iteration cycle. Scrum Alliance founder Ken
Schwaber recommends that teams allocate 5% of their time to revisiting and tending to the backlog.
Backlog grooming is the term favored by the Scrum Alliance, although Scrum co-founder Jeff
McKenna and Australian CST Kane Mar prefer to call this ceremony Story Time.

Return To Glossary

Big Ball of Mud
“A Big Ball of Mud is a haphazardly structured, sprawling, sloppy, duct-tape-and-baling-wire, spaghetti-code jungle.
These systems show unmistakable signs of unregulated growth, and repeated, expedient repair. Information is
shared promiscuously among distant elements of the system, often to the point where nearly all the important
information becomes global or duplicated. The overall structure of the system may never have been well defined. If
it was, it may have eroded beyond recognition. Programmers with a shred of architectural sensibility shun these
quagmires. Only those who are unconcerned about architecture, and, perhaps, are comfortable with the inertia of
the day-to-day chore of patching the holes in these failing dikes, are content to work on such systems.”

Brian Foote and Joseph Yoder, Big Ball of Mud.

References: Wikipedia, Big Ball of Mud
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 6

http://en.wikipedia.org/wiki/Scrum_(development)%23Product_backlog
http://en.wikipedia.org/wiki/Scrum_(development)%23Product_backlog
http://www.solutionsiq.com/resources/glossary/?Tag=Backlog+Item+Effort
http://www.solutionsiq.com/resources/glossary/?Tag=Backlog+Item+Effort
http://www.scrumalliance.org/
http://www.scrumalliance.org/
http://en.wikipedia.org/wiki/Ken_Schwaber
http://en.wikipedia.org/wiki/Ken_Schwaber
http://en.wikipedia.org/wiki/Ken_Schwaber
http://en.wikipedia.org/wiki/Ken_Schwaber
http://www.scrumalliance.org/profiles/8889-jeff-mckenna
http://www.scrumalliance.org/profiles/8889-jeff-mckenna
http://www.scrumalliance.org/profiles/8889-jeff-mckenna
http://www.scrumalliance.org/profiles/8889-jeff-mckenna
http://www.scrumalliance.org/profiles/11-kane-mar
http://www.scrumalliance.org/profiles/11-kane-mar
http://www.laputan.org/mud/
http://www.laputan.org/mud/
http://en.wikipedia.org/wiki/Big_ball_of_mud
http://en.wikipedia.org/wiki/Big_ball_of_mud
http://www.laputan.org/mud/
http://www.laputan.org/mud/

Big Visible Charts
Big visible charts are exactly what you would think they would be: Big charts posted near the agile team
that describe in different ways the team's progress. Big visible charts not only can be useful tools for the
team but also make it easier for any stakeholder to learn how the team is progressing. Big visible charts
are an important tool for implementing the essential agile values of transparency and communication.

References: XPProgramming.com
Return To Glossary

* Blocked
See Also:
Return To Glossary

Bottleneck
Any resource or process whose capacity is less than or equal to the demand placed on it, thus constraining
the flow of work or information through the process.

See Also: Kanban
References: Wikipedia
Return To Glossary

Branching
"The duplication of objects under revision control (such as a source code file, or a directory tree) in such a
way that the newly created objects initially have the same content as the original, but can evolve
independently of the original."

References: Accurev.com
Return To Glossary

Breaking the Build
When a developer adds changes to the source code repository that result in the failure of a
subsequent build process, the developer has "broken the build." Avoiding breaking the build is a
commitment generally required by agile software developers and integral to the XP practice continuous
integration.

The build is broken if the build process cannot successfully completed for any number of reasons
including (but not limited to) failure to compile, compiling with unacceptable warnings, or the failure of
any number of (usually) automated software tests. The more comprehensive the build process, the higher
the threshold for breaking the build.

If a code submission does result in breaking the build, the developer should immediately remove the
cause. If the build breaks but the immediate cause is not self-evident, a frequent practice of established
agile development teams is to take immediate action to fix the build.

Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 7

http://xprogramming.com/articles/bigvisiblecharts/
http://xprogramming.com/articles/bigvisiblecharts/
http://en.wikipedia.org/wiki/Bottleneck
http://en.wikipedia.org/wiki/Bottleneck
http://www.accurev.com/accurev-branching-merging.html
http://www.accurev.com/accurev-branching-merging.html

Build Process
"The amount of variability in implementation makes it difficult to come up with a tight definition of a
Build Process, but we would say that a Build Process takes source code and other configuration data as
input and produces artifacts (sometimes called derived objects) as output. The exact number and
definition of steps depends greatly on the types of inputs (Java versus C/C++ versus Perl/ython/Ruby
source code) and the type of desire output (CD image, downloadable zip file or self-extracting binary, etc).
When the source code includes a compiled language then the Build Process would certainly include a
compilation and perhaps a linking step." (Anthillpro)

Return To Glossary

Burn-Down Chart
A Burn down chart is a chart showing how much work remaining in a sprint. Calculated in hours
remaining and maintained by the Scrum Master daily.

A publicly displayed chart that depicts the total task hours remaining per day. It shows where the team
stands regarding completing the tasks that comprise the backlog items that achieve the goals of the sprint.
The X-axis represents days in the sprint, while the Y-axis is effort remaining (usually in ideal engineering
hours). To motivate the team, the sprint burn-down chart should be displayed prominently. It also acts as
an effective information radiator. A manual alternative to this is a physical task board. Ideally, the chart
burns down to zero by the end of the sprint. If the team members are reporting their remaining task hours
realistically, the line should bump up and down.

See Also: Burn-Up Chart
References: Wikipedia
Return To Glossary

Burn-Up Chart
Representation of the amount of stories completed, with points plotted on an X and Y axis that map an
upward trend of work completed until reaching 100%.

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 8

http://www.anthillpro.com/html/resources/build-management-server.html
http://www.anthillpro.com/html/resources/build-management-server.html
http://en.wikipedia.org/wiki/Burn_down_chart
http://en.wikipedia.org/wiki/Burn_down_chart

Return To Glossary

Business Alignment
See: Alignment
Return To Glossary

Business Value
Each user story in the Product Backlog should have a corresponding business value assigned. Typically
assign (L,M,H) Low, Medium, High. Product Owner prioritizes Backlog items by highest value.

An informal term that includes all forms of value that determine the health and well-being of the firm in
the long run. It expands the concept of value of the firm beyond economic value to include other forms of
value such as employee value, customer value, supplier value, channel partner value, alliance partner
value, managerial value, and societal value. In the context of agile development, it is what management is
willing to pay for and a way to identify the value of "work" or a story.

References: Wikipedia
Return To Glossary

C
Capacity

Capacity is the Number of Teammates (Productive Hours x Sprint Days).

Example:

Team size is 4,
Productive hours per person per day are 5,
Sprint length is 30 days.
Capacity = 4(5x30) = 600 hours.

Return To Glossary

* CANI
Constant And Never-ending Improvement

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 9

http://en.wikipedia.org/wiki/Business_Value
http://en.wikipedia.org/wiki/Business_Value

See Also: Kaizen, Inspect & Adapt, Retrospective
Return To Glossary

* Card-Conversation-Confirmation
XP Practices for generating a well groomed backlog, elaborating story contents and validating completed
results.

“User stories have three critical aspects. We can call these Card, Conversation, and Confirmation.”
Ron Jeffries, 2001

References: Card-Conversation-Confirmation
Return To Glossary

Certified ScrumMaster
Someone who is acting in the role of ScrumMaster on a Scrum team and who has attended a two-
day Certified ScrumMaster (CSM) class to obtain certification.

References: Wikipedia
Return To Glossary

Chicken
Scrum slang for someone who is interested in a project but has no responsibility for working on a task in
the active iteration. They may observe team meetings but cannot vote or talk.

Chickens are the people that are not committed to the project and are not accountable for deliverables.

References: Wikipedia
See also: Pig
Return To Glossary

Code Smell
"Any symptom in the source code of a computer program that indicates something may by
wrong." (Wikipedia)

Common code smells are often used to diagnose the quality of legacy code. Code smells generally indicate
that the code should be refactored or the overall design should be reexamined.

See Also: Refactoring

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 10

http://xprogramming.com/xpmag/expCardConversationConfirmation
http://xprogramming.com/xpmag/expCardConversationConfirmation
http://solutionsiq.web9.hubspot.com/Agile-Training/certified-scrummaster-training-course
http://solutionsiq.web9.hubspot.com/Agile-Training/certified-scrummaster-training-course
http://en.wikipedia.org/wiki/Scrum_master%23.E2.80.9CPig.E2.80.9D_roles
http://en.wikipedia.org/wiki/Scrum_master%23.E2.80.9CPig.E2.80.9D_roles
http://en.wikipedia.org/wiki/Scrum_master%23.E2.80.9CChicken.E2.80.9D_roles
http://en.wikipedia.org/wiki/Scrum_master%23.E2.80.9CChicken.E2.80.9D_roles
http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Code_smell

References: Wikipedia
Return To Glossary

Colocation
Refers to development teams located and working in the same location. When possible colocation is
desirable since it facilitates face-to-face collaboration, an important features of Agile software
development. Contrast with distributed development team.

See Also: Colocation, Agile software Development, Distributed Development Team
References: Wikipedia
Return To Glossary

Continuous Integration
"Continuous Integration is a software development practice where members of a team integrate their work
frequently, usually each person integrates at least daily - leading to multiple integrations per day. Each
integration is verified by an automated build (including test) to detect integration errors as quickly as
possible. Many teams find that this approach leads to significantly reduced integration problems and allows
a team to develop cohesive software more rapidly." (MartinFowler.com)

References: Wikipedia
Return To Glossary

Cross-Functional Team
Team comprised of members with all functional skills and specialties necessary to complete a project from
start to finish.

References: Wikipedia
Return To Glossary

* Crystal
1990s

Return To Glossary

Customer
The recipient of the output (product, service, information) of a process. Customers may be internal or
external to the organization. The customer may be one person, a department, or a large group. Internal
customers (outside of Information Technology) are sometimes called the "Business."

References: Wikipedia
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 11

http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Colocation_(business)
http://en.wikipedia.org/wiki/Colocation_(business)
http://www.martinfowler.com/
http://www.martinfowler.com/
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Cross-Functional_Team
http://en.wikipedia.org/wiki/Cross-Functional_Team
http://en.wikipedia.org/wiki/Customer
http://en.wikipedia.org/wiki/Customer

D
Daily Scrum

See: Standup Meeting
Return To Glossary

Daily Standup
See: Standup Meeting
Return To Glossary

Defect
A defect is a failure or bug of the product to behave in the expected fashion. Defects are stored in a bug-
tracking system, which may or may not be physically the same system used to store the Product Backlog. If
not, then someone (usually the Product Owner) must enter each Defect into the Product Backlog, for
sequencing and scheduling.

See Also: Story, User Story, Technical Story, Spike, Tracer Bullet
Return To Glossary

Definition of Done
The criteria for accepting work as completed. Specifying these criteria is the responsibility of the entire
team, including the business. Generally, there are three levels of "Done" (also known as Done-Done-
Done):

Done: Developed, runs on developer's box

Done: Verified by running unit tests, code review, etc.

Done: Validated as being of deliverable quality with functional tests, reviews, etc.

However, the exact criteria for what constitutes "Done" varies to meet the specific needs of different
organizations and initiatives. An important agile principle is to deliver (potentially) releasable
software after every iteration. The definition of done is a key component of Agile project governance
used to help teams comply with this principle.

Return To Glossary

Delivery Team
In agile software development, the delivery team refers to the cross-functional group of people that have
made a collective commitment to work together to produce the work product and improve their
performance over time. In addition to software development and test roles, the team may include any skill
set necessary to deliver the work product.

The delivery team usually includes people skilled to understand customer requirements and conduct
software design, coding and testing. Additional skills (e.g. UI design, usability, etc.) may also be included,
especially when they are integral to the software release.

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 12

The delivery team is encouraged to be self-organizing and to take collective responsibility for all work
commitments and outcomes. Delivery teams respond to requirements (often presented as user stories) by
collectively defining their tasks, task assignments, and level of effort estimates.

The ideal size for a delivery team adheres to the magic number seven plus or minus two rule.

See Also: Scrum Team, Product Owner, ScrumMaster
References: Wikipedia
Return To Glossary

* Dependency Injection Principle
See Also: SOLID OOD Principles:
 Single Responsibility Principle
 Open Closed Principle,
 Liskov Substitution Principle,
 Interface Segregation Principle,
 Dependency Injection Principle
Return To Glossary

Design Pattern
"A design pattern is a general reusable solution to a commonly occurring problem in software
design." (Wikipedia)

Return To Glossary

Distributed Development Team
Refers to development teams that work on the same project but are located across multiple geographic
locations or work sites. Distributed development teams are becoming the norm for today’s software
projects. When co-location is not an option, distributed teams are faced with the challenge of keeping
software projects on track and keeping remote developers engaged collaboratively. Agile development is
more difficult for distributed teams and generally require that special practices are adopted that mitigate
the inherent risks of distributed development.

See Also: Colocation
References: Wikipedia
Return To Glossary

Distributed Scrum
See Distributed Development Team
Return To Glossary

Domain Model
Information model describing the application domain that creates a shared language between business and
IT

References: Wikipedia

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 13

http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Design_pattern
http://en.wikipedia.org/wiki/Design_pattern
http://www.solutionsiq.com/resources/glossary/?Tag=Colocation
http://www.solutionsiq.com/resources/glossary/?Tag=Colocation
http://en.wikipedia.org/wiki/Distributed_Development
http://en.wikipedia.org/wiki/Distributed_Development
http://en.wikipedia.org/wiki/Domain_Model
http://en.wikipedia.org/wiki/Domain_Model

Return To Glossary

DSDM
See Dynamic Systems Development Method
Return To Glossary

* Dynamic Systems Development Method
Return To Glossary

E
* Earned Value Chart

Return To Glossary

Emergence
Emergence is an attribute of complex systems. When applied to software development, it is the principle
that the best designs and the best ways of working come about over time through doing the work, rather
than being defined in advance as part of an over-arching specification or detailed project plan.

See Also: Self-Organization
References: Wikipedia
Return To Glossary

Empiricism
Empiricism is the principle that knowledge is acquired through our experience, which we obtain through
our senses. Empiricism is the cornerstone of all scientific inquiry and the approach used by Agile teams to
identify emergent requirements and incrementally develop software.

See Also: Inspect and Adapt
References: Wikipedia
Return To Glossary

Epic
A very large user story that is eventually broken down into smaller stories. Epics are often used as
placeholders for new ideas that have not been thought out fully or whose full elaboration has been
deferred until actually needed. Epic stories help agile development teams effectively manage
and groom their product backlog.

See Also: Story, Backlog, Backlog Grooming
References: SolutionsIQ: Epic
Return To Glossary

EssUP
See Essential Unified Process

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 14

http://en.wikipedia.org/wiki/Complex_systems
http://en.wikipedia.org/wiki/Complex_systems
http://en.wikipedia.org/wiki/Complex_systems
http://en.wikipedia.org/wiki/Complex_systems
http://en.wikipedia.org/wiki/Empiricism
http://en.wikipedia.org/wiki/Empiricism
http://www.solutionsiq.com/resources/glossary/bid/56588/Epic
http://www.solutionsiq.com/resources/glossary/bid/56588/Epic

Return To Glossary

* Essential Unified Process:
Return To Glossary

Estimation
The process of agreeing on a size measurement for the stories or tasks in a product backlog. On agile
projects, estimation is done by the team responsible for delivering the work, usually using a planning
game.

Estimates on stories are made in abstract story points.

Estimates on tasks are made in hours.

See Also: Story, Backlog, Planning Game, Tasks, Story Points
References: Wikipedia
Return To Glossary

* Estimate to Complete Chart
Return To Glossary

Extreme Programming
1996

A software development methodology adhering to a very iterative and incremental approach, Extreme
Programming is intended to improve software quality and responsiveness to changing customer
requirements. As a type of agile software development, it advocates frequent releases in short
development cycles (time-boxing), which is intended to improve productivity and introduce checkpoints
where new customer requirements can be adopted.

XP consists of a number of integrated practices for developers and management - the original twelve
practices of XP include:

1. Small Releases
2. On-site Customer
3. Sustainable Pace
4. Simple Design
5. Continuous Integration
6. Unit Testing
7. Coding Conventions
8. Refactoring Mercilessly
9. Test-Driven Development
10. System Metaphor
11. Collective Code Ownership
12. Pair Programming

Most successful Agile practitioners adopt some subset of XP practices, often in conjunction with Scrum.

See Also: Unit Testing, Refactoring, Extreme Programming (XP), Time-box
References: Wikipedia

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 15

http://en.wikipedia.org/wiki/Estimation_(project_management)
http://en.wikipedia.org/wiki/Estimation_(project_management)
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming

Return To Glossary

F
Fail-Fast

"A property of a system or module with respect to its response to failures. A fail-fast system is designed to
immediately report at its interface any failure or condition that is likely to lead to failure." (Wikipedia)

Return To Glossary

Feature
A coherent business function or attribute of a software product or system. Features are large and chunky
and usually comprise many detailed (unit) requirements. A single feature typically is implemented through
many stories. Features may be functional or non-functional; they provide the basis for organizing stories.

See also: Minimum Marketable Features, User Story
References: Wikipedia
Return To Glossary

FDD
See Feature Driven Development
Return To Glossary

* Feature Driven Development
Return To Glossary

Fibonacci Sequence
A sequence of numbers in which the next number is derived by adding together the previous two (e.g. 1, 2,
3, 5, 8, 13, 21, 34...). The sequence is used to size stories in Agile estimation techniques such as Planning
Poker.

References: Fibonacci Sequence
Return To Glossary

Flow
Continuous delivery of value to customers (vs. big-batch, big-release, big-bang).

See also: Planning Poker, Fibonacci Sequence
References: Wikipedia
Return To Glossary

* Forked Development
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 16

http://en.wikipedia.org/wiki/Fail_Fast
http://en.wikipedia.org/wiki/Fail_Fast
http://en.wikipedia.org/wiki/Feature_(software_design)
http://en.wikipedia.org/wiki/Feature_(software_design)
http://en.wikipedia.org/wiki/Fibonacci_Sequence
http://en.wikipedia.org/wiki/Fibonacci_Sequence
http://en.wikipedia.org/wiki/Fibonacci_Sequence
http://en.wikipedia.org/wiki/Fibonacci_Sequence

Fog Of War
“The fog of war is a term used to describe the uncertainty in situation awareness experienced by
participants in military operations. The term seeks to capture the uncertainty regarding own capability,
adversary capability, and adversary intent during an engagement, operation, or campaign.”

Wikipedia
In Agile the fog of war refers to the increasing uncertainty of estimates.

As stories increase in size the level of confidence in the estimates decreases.

As stories are scheduled farther away for implementation the level of confidence in those estimates
decreases significantly. For this reason it is not reasonable to depend on estimates for stories expected to
be implemented more than a month out. As those stories come into view on the near term schedule new
estimates can be made with greater confidence.

Generally the best estimates are given during sprint planning sessions where the story is expected to be
implemented that sprint.

References: Wikipedia
Return To Glossary

* Functional Test
See Also:
Return To Glossary

G

H
* Ha

See Also: Shu-Ha-Ri, Shu, Ri
Return To Glossary

I
Impediment

In Scrum: Anything that prevents a team member from performing work as efficiently as possible is an
impediment. Each team member has an opportunity to announce impediments during the daily standup
meeting. The ScrumMaster is charged with ensuring impediments are removed. ScrumMasters often
arrange sidebar meetings, Parking Lot, when impediments cannot be resolved on the spot in the daily
Scrum meeting.

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 17

http://en.wikipedia.org/wiki/Intent_(Military)
http://en.wikipedia.org/wiki/Intent_(Military)
http://en.wikipedia.org/wiki/Fog_of_war
http://en.wikipedia.org/wiki/Fog_of_war
http://en.wikipedia.org/wiki/Fog_of_war
http://en.wikipedia.org/wiki/Fog_of_war
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56552/ScrumMaster
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56552/ScrumMaster

See also: Scrum, Daily Standup, ScrumMaster, Parking Lot
References: Wikipedia
Return To Glossary

INVEST
Criteria for well written user stories. Every user story should satisfy the following INVEST principles:

• Independent
• Negotiable
• Valuable
• Estimable
• Small
• Testable.

Return To Glossary

* Integration Test
See Also:
Return To Glossary

Inspect and Adapt
"Inspect and Adapt" is a slogan used by the Scrum community to capture the idea of discovering over the
course of a project emergent software requirements and ways to improve the overall performance of the
team. It neatly captures the both the concept of empirical knowledge acquisition and feedback-loop-driven
learning.

See Also: CANI, Kaizen, Retrospective, Empiricism
Return To Glossary

* Interface Segregation Principle
See Also: SOLID OOD Principles:
 Single Responsibility Principle,
 Open Closed Principle,
 Liskov Substitution Principle,
 Interface Segregation Principle
 Dependency Injection Principle
Return To Glossary

* Iron Triangle
Return To Glossary

IT Alignment
See: Alignment
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 18

http://en.wikipedia.org/wiki/Fibonacci_Sequence
http://en.wikipedia.org/wiki/Fibonacci_Sequence

Iteration
A period (from 1 week to 2 months in duration) during which the Agile development team produces an
increment of completed software. All system lifecycle phases (requirements, design, code, and test) must
be completed during the iteration and then (empirically) demonstrated for the iteration to be accepted as
successfully completed. At the beginning of the iteration, the business or the product owner identifies the
next (highest priority) chunk of work for the team to complete. The development team then estimates the
level of effort and commits to completing a segment of work during the iteration. During the iteration, the
team is not expected to change objectives or respond to change requests. However, at the front end of the
next iteration the business or product owner is free to identify any new segment of work as the current
highest priority.

See also: Sprint, Definition of Done, Velocity, Task Board, Kanban
References: Wikipedia
Return To Glossary

J

K
Kanban

Kanban is a tool derived from lean manufacturing and is associated with the branch of agile practices
loosely referred to as Lean software development. Like a task board, Kanban visually represents the state
of work in process. Unlike a task board, the Kanban constrains how much work in process is permitted to
occur at the same time. The purpose of limiting work in process is to reduce bottlenecks and increase
throughput by optimizing that segment of the value stream that is the subject of the Kanban. Task boards
simply illustrate work in process without necessarily deliberately how much of work in process may occur
at any given time, although the same effect may be achieved through the organic self-organization of the
team.

A principle difference between Kanban and Scrum is that Scrum limits work in process through time-
boxing (i.e. the sprint) and Kanban limits work in process by limiting how much work may occur at one
time (e.g. N tasks or N stories).

References: Wikipedia
Return To Glossary

* Kata
See Also:
Return To Glossary

* Kaizen
See Also: CANI, Inspect & Adapt, Retrospective

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 19

http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56589/Empiricism
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56589/Empiricism
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56562/Product-Owner
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56562/Product-Owner
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56548/Sprint
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56548/Sprint
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56594/Definition-of-Done
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56594/Definition-of-Done
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56530/Velocity
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56530/Velocity
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56539/Task-Board
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56539/Task-Board
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56575/Kanban
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56575/Kanban
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56574/Lean-Software-Development
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56574/Lean-Software-Development
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56539/Task-Board
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56539/Task-Board
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56513/Work-in-Progress-WIP-AKA-Work-in-Process
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56513/Work-in-Progress-WIP-AKA-Work-in-Process
http://en.wikipedia.org/wiki/Value_stream
http://en.wikipedia.org/wiki/Value_stream
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56533/Timebox
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56533/Timebox
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56533/Timebox
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56533/Timebox
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56548/Sprint
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56548/Sprint
http://en.wikipedia.org/wiki/Kanban
http://en.wikipedia.org/wiki/Kanban

Return To Glossary

L
Lean Software Development

An adaption of Lean manufacturing principles and practices to the software development domain. Lean
software development (also known as Lean-Agile) is focused on reducing (lean) waste and optimizing the
software production value stream. In large part, the principles and practices of lean software development
are congruent with other well-known Agile practices such as Scrum and extreme programming.
However, in some cases they use different means to obtain the same end. For example, Scrum
and Kanban (a lean technique) both reduce work in process (a lean waste) but use different techniques to
accomplish this objective.

Authors Mary and Tom Poppendieck bring Lean Manufacturing Principles to Software Development.

References: Wikipedia
Return To Glossary

* Levels of Planning, 5
In Scrum there are 5 levels of planning identified as :

1. Vision
2. Roadmap
3. Release
4. Sprint
5. Daily

Return To Glossary

* Liskov Substitution Principle
See Also: SOLID OOD Principles: SingleResponsibilityPrinciple, OpenClosedPrinciple, InterfaceSegregationPrinciple,
DependencyInjectionPrinciple
Return To Glossary

* Load Test
See Also:
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 20

http://en.wikipedia.org/wiki/Value_stream
http://en.wikipedia.org/wiki/Value_stream
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56555/Scrum
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56555/Scrum
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56586/Extreme-Programming-XP
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56586/Extreme-Programming-XP
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56575/Kanban
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56575/Kanban
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Lean_software_development

M
Minimum Marketable Features

The smallest set of functionality that must be realized in order for the customer to perceive value. A
"MMF" is characterized by the three attributes: minimum, marketable, and feature. A feature is something
that is perceived, of itself, as value by the user. "Marketable" means that it provides significant value to the
customer; value may include revenue generation, cost savings, competitive differentiation, brand-name
projection, or enhanced customer loyalty. A release is a collection of MMFs that can be delivered together
within the time frame.

References: Wikipedia
Return To Glossary

N

O
OpenUP

See Open Unified Process
Return To Glossary

* Open Unified Process
Return To Glossary

* Open Closed Principle
See Also: SOLID OOD Principles: SingleResponsibilityPrinciple, LiskovSubstitutionPrinciple, InterfaceSegregationPrinciple,
DependencyInjectionPrinciple
Return To Glossary

* Osmotic Communication
Return To Glossary

P
Pair Programming

"An Agile software development technique in which two programmers work together at one workstation.
One types in code while the other reviews each line of code as it is typed in. The person typing is called

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 21

http://en.wikipedia.org/wiki/Incremental_funding_methodology
http://en.wikipedia.org/wiki/Incremental_funding_methodology
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56620/Agile-Software-Development
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56620/Agile-Software-Development

the driver. and the person reviewing the code is called the observer or navigator. The two programmers
switch roles frequently." (Wikipedia)

Pair programming is one of the original 12 extreme programming practices. As counter-intuitive as it may
seem to the uninitiated, pair programming is more productive than two individuals working independently
on separate tasks.

Return To Glossary

Parallel Development
Parallel development occurs whenever a software development project requires separate development
efforts on related code bases. For example, when a software product is shipped to customers, a product
development team may begin working on a new major feature release of the product, while a product
maintenance team may work on defect corrections and customer patch releases of the shipped product.
Both teams begin work from the same code base, but the code necessarily diverges. Frequently the code
bases used in parallel development efforts must be merged at some future date, for example, to ensure
that the defect corrections provided by the product maintenance team are integrated into the major release
that the product development team is working on.

Return To Glossary

* Pareto Principle
References: BetterExplained, Wikipedia
Return To Glossary

* Parking Lot
Return To Glossary

Pattern
See: Design Pattern
Return To Glossary

* Performance Test
See Also: Profiling, Acceptance Test, Functional Test, SystemTest, Integration Test, Unit Test, Stress Test, Load Test
Return To Glossary

Pig
Scrum slang. Someone who is responsible for doing a task on an active iteration. It comes from the joke,
"A chicken and a pig talk about breakfast. The chicken says, 'Let's have bacon and eggs.' The pig replies,
'That's fine for you. You are just making a contribution, but I have to be fully committed.'" Pigs are actively
involved in the project.

See also: Chicken
References: Wikipedia
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 22

http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56586/Extreme-Programming-XP
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56586/Extreme-Programming-XP
http://betterexplained.com/articles/understanding-the-pareto-principle-the-8020-rule/
http://betterexplained.com/articles/understanding-the-pareto-principle-the-8020-rule/
http://en.wikipedia.org/wiki/Pareto_principle
http://en.wikipedia.org/wiki/Pareto_principle
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56593/Design-Pattern
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56593/Design-Pattern
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://en.wikipedia.org/wiki/Scrum_master%23Roles
http://en.wikipedia.org/wiki/Scrum_master%23Roles

Planning
5 Levels of Planning

plans are useless but planning is indispensable. Dwight Eisenhower

See Also: Product Vision, Product Roadmap, Release Plan, Sprint Plan, Daily Standup
References: AgileJournal, RallyDev
Return To Glossary

Planning Game
"The main planning process within extreme programming is called the Planning Game. The game is a
meeting that occurs once per iteration, typically once a week. The planning process is divided into two
parts." (Wikipedia)

In XP, the planning game includes iteration (or sprint) planning and release planning. In scrum, sprint and
release planning are two of the five levels of planning used in Agile projects.

See also: Sprint Planning Meeting, Release Planning
References: Wikipedia
Return To Glossary

Planning Poker
"Planning Poker is a consensus-based technique for estimating, mostly used to estimate effort or relative
size of tasks in software development." (Wikipedia)

Planning poker is a game used to apply estimates to stories. It uses a voting approach designed to avoid
influence bias (anchoring).

How it Works:

1. Each estimator selects a set of cards.
2. Facilitator reads item to be estimated, and moderates a brief discussion to clarify details.
3. Facilitator calls for estimates. Each estimator places estimate face down, hiding the value.

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 23

http://www.pragmaticmarketing.com/publications/topics/08/scaling-agile-processes-five-levels-of-planning
http://www.pragmaticmarketing.com/publications/topics/08/scaling-agile-processes-five-levels-of-planning
http://hosteddocs.ittoolbox.com/5-levels-of-agile-planning-nov.pdf
http://hosteddocs.ittoolbox.com/5-levels-of-agile-planning-nov.pdf
http://en.wikipedia.org/wiki/Planning_game%23Planning_game
http://en.wikipedia.org/wiki/Planning_game%23Planning_game
http://en.wikipedia.org/wiki/Planning_game%23Planning_game
http://en.wikipedia.org/wiki/Planning_game%23Planning_game
http://en.wikipedia.org/wiki/Planning_poker
http://en.wikipedia.org/wiki/Planning_poker

4. Facilitator calls for vote, and all estimators turn over cards at the same time.
5. If all cards agree, their value is recorded as the estimate.
6. Otherwise, facilitator asks high and low estimators to explain their reasoning, and moderates a

brief discussion to clarify issues.
7. Repeat 3-6 until estimates converge

References: Wikipedia
Return To Glossary

* Pragmatic Programming

See Also: Agile Development Methods
Return To Glossary

* Predictive

See Also: Adaptive, Reactive
Return To Glossary

* Prioritization

See Also: Product Backlog
Return To Glossary

* Process Framework
Return To Glossary

Product
Broadly speaking, product refers to a collection of tangible and intangible features that are integrated and
packaged into software releases that offer value to a customer or to a market. The term "product" is often
used in Agile software development to denote the software that is the subject of the iteration or release.
As such, "product" is generally used interchangeably with other names for software release including
"software release", "system", or "business application."

References: Wikipedia
Return To Glossary

Product Backlog
The product backlog (or "backlog") is the requirements for a system, expressed as a prioritized list of
product backlog Items. These included both functional and non-functional customer requirements, as well
as technical team-generated requirements. While there are multiple inputs to the product backlog, it is the
sole responsibility of the product owner to prioritize the product backlog.

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 24

http://en.wikipedia.org/wiki/Planning_poker
http://en.wikipedia.org/wiki/Planning_poker
http://en.wikipedia.org/wiki/Product_(business)
http://en.wikipedia.org/wiki/Product_(business)

During a Sprint planning meeting, backlog items are moved from the product backlog into a sprint, based
on the product owner's priorities.

See: Backlog
Return To Glossary

* Product Backlog Item
A unit of work, usually a story or a task, listed on the project backlog.

See Also: Product Backlog, Backlog, Backlog Item, Story, Task
Return To Glossary

Product Owner
Product Owner is one of the key roles in Scrum. The product owner is the primary business
representative who represents the business stakeholders' "voice of the customer" and the "voice of the
business" to the sprint team. The responsibilities of the Product Owner include:

• Establishing, nurturing, and communicating the product vision
• Creating and leading a team of developers to best provide value to the customer
• Monitoring the project against its ROI goals and an investment vision
• Making decisions about when to create an official release

The product owner is a role rather than a position. Consequently, several people likely participate in the
product owner role for larger projects.

References: Wikipedia
Return To Glossary

* Product Roadmap
Return To Glossary

Product Vision
The product vision is one of the five levels of planning.

A product vision is a brief statement of the desired future state that would be achieved through the project
initiative. The product vision may be expressed in any number of ways including financial performance,
customer satisfaction, market share, functional capability, etc. The product vision is typically the
responsibility of executive sponsorship and is articulated to the Agile development team by the business
and by the product owner, if the team is using Scrum.

References: Wikipedia:Elevator Pitch
See also: Product
Return To Glossary

* Productivity
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 25

http://en.wikipedia.org/wiki/Product_owner#Characteristics
http://en.wikipedia.org/wiki/Product_owner#Characteristics
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56562/Product-Owner
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56562/Product-Owner
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56555/Scrum
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56555/Scrum
http://en.wikipedia.org/wiki/Elevator_pitch
http://en.wikipedia.org/wiki/Elevator_pitch
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56564/Product
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56564/Product

* Profiling
See Also: Performance Test
Return To Glossary

Q

R
* Reactive

Return To Glossary

Refactoring
Changing existing software code in order to improve the overall design. Refactoring normally doesn't
change the observable behavior of the software; it improves its internal structure. For example, if a
programmer wants to add new functionality to a program, she may decide to refactor the program first to
simplify the addition of new functionality in order to reduce technical debt.

Refactoring is one of the original twelve extreme programming practices and is considered critical for
incrementally maintaining technical quality on Agile development projects.

See Also: Code Smell, Extreme Programming, Technical Debt, Design Pattern
References: Wikipedia
Return To Glossary

Release (Software)
The movement of a software product or system from development into production. One principle of
Agile development is to focus on releasing software into productive use as soon as a minimum marketable
feature set can be delivered, and then proceeding with frequent incremental releases. This is in contrast to
alternative project approaches where most requirements are delivered in one “big bang” release.

It is desirable in Agile development to produce releasable software after every iteration (or sprint), even if
the code is not actually put into production for use by end-users.

See Also: Minimum Marketable Features
Return To Glossary

Release Backlog
TBD
See Also:
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 26

http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56537/Technical-Debt
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56537/Technical-Debt
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56586/Extreme-Programming-XP
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56586/Extreme-Programming-XP
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Refactoring
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56573/Minimum-Marketable-Features
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56573/Minimum-Marketable-Features
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56573/Minimum-Marketable-Features
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56573/Minimum-Marketable-Features

Release Management
TBD
See Also:
Return To Glossary

Release Plan
The release plan is a schedule for releasing software into productive use. Typical release plans include the
key features to be delivered, along with corresponding release dates. Release plans may also expose key
milestones or dependencies that parallel project activities. In agile development, release plans can be
mapped back to the iterations (sprints) that implement the released features.

See Also: Release, Release Planning
References: Wikipedia
Return To Glossary

Release Planning
Release planning refers to planning activities used to estimate when software will be released into product
use. Activities include projecting the level of effort in terms of the number of iterations that will be
necessary to deliver the desired features. This is typically done by extrapolating the development team's
performance on the basis of its velocity.

A release planning meeting that brings together all parties that have a stake in the outcome and have some
kind of delivery responsibility to achieve the release is often necessary to produce a viable release plan.
This is especially the case when several development and non-development production efforts are running
in parallel with possible dependencies.

Release planning is one of the five levels of planning.

See Also: Release Plan, Release, Sprint, Velocity
References: Wikipedia
Return To Glossary

Research Story
TBD
Return To Glossary

Resources
TBD
Return To Glossary

Retrospective
A time-boxed meeting held at the end of an iteration, or at the end of a release, in which the team
examines its processes to determine what succeeded and what could be improved. The retrospective is key
to an Agile team's ability to "inspect and adapt" in the pursuit of "continuous improvement." The Agile
retrospective differs from other methodologies' "Lessons Learned" exercises, in that the goal is not to
generate a comprehensive list of what went wrong. A positive outcome for a retrospective is to identify one
or two high-priority action items the team wants to work on in the next iteration or release. The emphasis

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 27

http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56548/Sprint
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56548/Sprint
http://en.wikipedia.org/wiki/Software_release_life_cycle
http://en.wikipedia.org/wiki/Software_release_life_cycle
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56530/Velocity
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56530/Velocity
http://en.wikipedia.org/wiki/Extreme_programming_practices%23Release_planning
http://en.wikipedia.org/wiki/Extreme_programming_practices%23Release_planning
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56559/Release-Software
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56559/Release-Software
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56578/Inspect-and-Adapt
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56578/Inspect-and-Adapt

is on actionable items, not comprehensive analysis. Retrospectives may take many forms, but there is
usually a facilitator, who may or may not be a member of the team, and the process is typically broken
down into three phases: data gathering, data analysis, and action items.

See Also: Sprint, Release, Inspect & Adapt, Effective Retrospectives, CANI, Kaizen, Inspect & Adapt
References: Wikipedia
Return To Glossary

* Ri
See Also: Shu-Ha-Ri, Shu, Ha
Return To Glossary

* ROI
Return To Glossary

* Ron Dori
See Also:
Return To Glossary

S
* Schedule

Return To Glossary

* Scope
Return To Glossary

Scrum
A lightweight process framework originally developed in 1995 by Ken Schwaber and Jeff Sutherland.

Scrum is a framework for the iterative development of complex products, particularly software. Scrum is
the most widely recognized Agile framework, and is compatible with other Agile practices like Extreme
Programming. Scrum is comprised of a series of short iterations - called sprints - each of which ends with
the delivery of an increment of working software. The framework is comprised of:

• Three roles of the Scrum Team
1. Product Owner
2. ScrumMaster
3. Delivery Team

• Five Time-boxes:
1. Sprint
2. Sprint Planning Meeting
3. Daily Standup Meeting

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 28

http://en.wikipedia.org/wiki/Retrospective
http://en.wikipedia.org/wiki/Retrospective

4. Sprint Review
5. Retrospective

• Three artifacts:
1. Burn-down charts
2. Product backlog
3. Sprint backlog

Sometimes the term Scrum is used interchangeably with the term Agile, but this is incorrect. Agile is not a
framework, but a broader set of values and principles, while Scrum is a specific framework that fits
comfortably under the Agile umbrella.

See Also:
References: ScrumAlliance, Scrum.org, ScrumGuide
Return To Glossary

ScrumBut
ScrumButs are reasons why teams can’t take full advantage of Scrum to solve their problems and realize
the full benefits of product development using Scrum. Every Scrum role, rule, and timebox is designed to
provide the desired benefits and address predictable recurring problems. ScrumButs mean that Scrum has
exposed a dysfunction that is contributing to the problem, but is too hard to fix. A ScrumBut retains the
problem while modifying Scrum to make it invisible so that the dysfunction is no longer a thorn in the side
of the team.

A ScrumBut has a particular syntax: (ScrumBut)(Reason)(Workaround)

ScrumBut Examples:
"(We use Scrum, but) (having a Daily Scrum every day is too much overead,) (so we only have one per
week.)"

"(We use Scrum, but) (Retrospectives are a waste of time,) (so we don't do them.)"

"(We use Scrum, but) (we can't build a piece of functionality in a month,) (so our Sprints are 6 weeks
long.)"

"(We use Scrum, but) (sometimes our managers give us special tasks,) (so we don't always have time to
meet our definition of done.)"

Sometimes organizations make short term changes to Scrum to give them time to correct deficiencies. For
example, "done" may not initially include regression and performance testing because it will take several
months to develop automated testing. For these months, transparency is compromised, but restored as
quickly as possible.

See Also: Scrum, ScrummerFall, ScrumPlus
References:
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 29

http://www.scrumalliance.org/learn_about_scrum
http://www.scrumalliance.org/learn_about_scrum
http://www.scrum.org/what-is-scrum/
http://www.scrum.org/what-is-scrum/
http://www.scrum.org/scrumguides/
http://www.scrum.org/scrumguides/

ScrummerFall
Waterfall management style using iterations and scrum elements. Waterfall/SDLC have distinct stages
(Analysis, Design, Develop, Test, Deploy, Maintenance). Scrum combines all stages in a single sprint
(iteration).

ScrummerFall happens when a group attempts to bridge these two concepts: Design/Requirement docs
are generated in detail ahead of time. Development is completed each sprint then passed to another team
for testing outside of that sprint.

a.k.a: Mini-Waterfall
See Also: Scrum, ScrumBut, ScrumPlus
References:
Return To Glossary

ScrumPlus
Enhancing the Scrum kernel with additional Agile practices that improve transparency, engineering focus,
quality management, release management...

See Also: Scrum, ScrumBut, ScrummerFall,
References:
Return To Glossary

Scrum Team
The scrum team consists of three roles;

1.ScrumMaster
 Maintains the processes (typically in lieu of a project manager)

2.Product Owner
 Represents the stakeholders and the business

3.Delivery Team
 A cross-functional group who do the actual analysis, design, implementation, testing, etc.

References: Wikipedia:Project Manager
Return To Glossary

ScrumMaster
The ScrumMaster is responsible for maintaining the Scrum process and the overall health of the team.
The ScrumMaster assures that the team is fully functional and productive. The ScrumMaster performs
this role by administering the Scrum time-boxes, facilitating the organic self-organization of the team,
and removing any obstacles that may be impeding the team’s progress.

What the ScrumMaster is not:

The ScrumMaster is not the task master, since the team is responsible for assigning its own tasks.

The ScrumMaster is not the supervisor of the team, since the supervisor/subordinate relationship may
impede the organic self-organization of the team.

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 30

http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56555/Scrum
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56555/Scrum
http://en.wikipedia.org/wiki/Project_manager
http://en.wikipedia.org/wiki/Project_manager
http://en.wikipedia.org/wiki/Project_manager
http://en.wikipedia.org/wiki/Project_manager

A good ScrumMaster proactively anticipates problems, opportunities for improvement, and conducts pre-
planning so the team can focus on delivering its sprint commitments. The ScrumMaster also keeps the
team honest regarding its commitments and helps the team identify opportunities to improve
collaboration.

In Scrum, when the Scrum roles are properly fulfilled there is no need for a traditional project manager to
supervise the team. Nevertheless, many organizations choose to retain project managers, after they adopt
Scrum, to perform functions that extend beyond the scope of the Scrum team functions.

References: Wikipedia
Return To Glossary

Scrum Snowman
The scrum process of frequent and early feedback cycles is often referred to as the “snowman model” as
the cyclic graph resembles a snowman.

References: MountainGoatSoftware
Return To Glossary

Self-Organization
Self-organization is a property of complex adaptive systems, whereby the organization of the system
emerges over time as a response to its environment. In Agile development, particularly in Scrum, self-
organization is a property of the agile development team, which organizes itself over time, rather than
being ordered by an external force such as a project or development manager. Self-organization also
reflects the management philosophy whereby operational decisions are delegated as much as possible to
those who have the most detailed knowledge of the consequences and practicalities associated with those
decisions.

See Also: Emergence, Inspect and Adapt
References: Wikipedia: Self-Organization, Wikipedia: Complex Adaptive Systems
Return To Glossary

* Shu
See Also: Shu-Ha-Ri, Ha, Ri
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 31

http://en.wikipedia.org/wiki/ScrumMaster%23.E2.80.9CPig.E2.80.9D_roles
http://en.wikipedia.org/wiki/ScrumMaster%23.E2.80.9CPig.E2.80.9D_roles
http://www.mountaingoatsoftware.com/scrum/figures
http://www.mountaingoatsoftware.com/scrum/figures
http://en.wikipedia.org/wiki/Complex_adaptive_systems
http://en.wikipedia.org/wiki/Complex_adaptive_systems
http://en.wikipedia.org/wiki/Self-Organization
http://en.wikipedia.org/wiki/Self-Organization
http://en.wikipedia.org/wiki/Complex_adaptive_systems
http://en.wikipedia.org/wiki/Complex_adaptive_systems

* Shu-Ha-Ri
See Also: Shu, Ha, Ri
Return To Glossary

* Sidebar
See Also: Parking Lot
Return To Glossary

* Single Responsibility Principle
See Also: SOLID OOD Principles:
 Single Responsibility Principle
 Open Closed Principle,
 Liskov Substitution Principle,
 Interface Segregation Principle,
 Dependency Injection Principle
Return To Glossary

* Software Quality Metrics
Dynamic Source Analysis

 Code Coverage

 Line Coverage

 Branch Coverage

 Method Coverage

 Class Coverage

 Package Coverage

Static Source Analysis

 Coding Standards

 Style, Formatting

 StyleCop

 Architectural Rules Compliance

 Findbugs, PMD, Checkstyle, FxCop

LCOM4

Complexity

 CCN

NCSS

Coupling

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 32

 Afferent Coupling

 Efferent Coupling

Spider Graph

Duplication: CPD

See Also: Wikipedia, Sonar-Metrics
Return To Glossary

* SOLID OOD Principles
See Also: Single Responsibility Principle
 Open Closed Principle,
 Liskov Substitution Principle,
 Interface Segregation Principle,
 Dependency Injection Principle
Return To Glossary

Spike
A story or task aimed at answering a question or gathering information, rather than implementing product
features, user stories, or requirements. Sometimes a user story is generated that cannot be estimated until
the development team does some actual work to resolve a technical question or a design problem. The
solution is to create a “spike,” which is a story whose purpose is to provide the answer or solution. Like
any other story or task, the spike is then given an estimate and included in the sprint backlog.

Return To Glossary

Sprint
The Scrum term for an iteration. The sprint starts with a sprint planning meeting. At the end of the
sprint there is a sprint review meeting, followed by a sprint retrospective meeting.

References: Wikipedia
Return To Glossary

Sprint Backlog
A list of features, user stories or tasks that are pulled from the product backlog for consideration for
completion during the upcoming sprint. Product backlog features and user stories are broken down into
tasks to form the sprint backlog during the sprint planning meeting.

See Also: Backlog, Sprint
References: Wikipedia
Return To Glossary

Sprint Burn-Down Chart
See Burn-Down Chart

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 33

http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Software_metric
http://docs.codehaus.org/display/SONAR/Metric+definitions
http://docs.codehaus.org/display/SONAR/Metric+definitions
http://en.wikipedia.org/wiki/Sprint_(scrum)
http://en.wikipedia.org/wiki/Sprint_(scrum)
http://en.wikipedia.org/wiki/Scrum_(development)%23Sprint_backlog
http://en.wikipedia.org/wiki/Scrum_(development)%23Sprint_backlog

Sprint Planning Meeting
Each sprint begins with a two-part sprint planning meeting, the activity that prioritizes and identifies
stories and concrete tasks for the next sprint. For a one-month or four-week sprint, this two-part meeting
should last eight hours; for a two-week sprint, it lasts about four hours. As a general rule of thumb, the
number of weeks in a sprint multiplied by two hours equals the total length of the spring planning meeting.

• Part one of the sprint planning meeting is a review of the product backlog. This is when the product
owner describes what needs to be built for the next sprint. During this part of the meeting, it is not
uncommon for the team to discuss the sprint objectives with the product owner, and ask clarifying
questions and remove ambiguity.

• During part two of the sprint planning meeting, the team decides how the work will be built. The team
will begin decomposing the product backlog items into work tasks and estimating these in hours. The
product owner must be available during this meeting but does not have to be in the room. The output
of the second planning meeting is the Sprint Backlog.

References: Wikipedia, Card-Conversation-Confirmation
Return To Glossary

Sprint Review
A meeting held at the end of each sprint in which the delivery team shows what they accomplished
during the sprint; typically this takes the form of a demo of the new features. The sprint review meeting is
intentionally kept very informal. With limited time allocated for Sprint review prep. A sprint review
meeting should not become a distraction or significant detour for the team; rather, it should be a natural
result of the sprint.

References: Wikipedia
Return To Glossary

Stakeholder
Anyone external to the team with a vested interest in the outcome of the team's work.

See Also: Chicken
References: Wikipedia
Return To Glossary

Standup Meeting
The Daily Standup Meeting is a minimalist status meeting, time-boxed to fifteen minutes. Its purpose is to
ensure that questions are answered quickly, that issues are identified and addressed quickly, and to
provide Team members with a common understanding of how the Sprint is progressing. The
ScrumMaster facilitates this meeting.

Three questions asked:

• What have you done since last daily scrum?
• What will you do before the next daily scrum?
• What obstacles are impeding your work?

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 34

http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56548/Sprint
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56548/Sprint
http://en.wikipedia.org/wiki/Scrum_(development)%23Meetings
http://en.wikipedia.org/wiki/Scrum_(development)%23Meetings
http://xprogramming.com/xpmag/expCardConversationConfirmation
http://xprogramming.com/xpmag/expCardConversationConfirmation
http://en.wikipedia.org/wiki/Scrum_(development)%23Meetings
http://en.wikipedia.org/wiki/Scrum_(development)%23Meetings
http://en.wikipedia.org/wiki/Project_stakeholder
http://en.wikipedia.org/wiki/Project_stakeholder

These items are often referred to as Y-T-I (Yesterday, Today, Impediments)

The ScrumMaster ensures that participants call sidebar meetings for any discussions that go too far outside
these constraints.

The Scrum literature recommends that this meeting take place first thing in the morning, as soon as all
team members arrive.

a.k.a: Daily Scrum, Daily Standup
References: Wikipedia
Return To Glossary

Story
Scrum requirements written in short narrative form. There are 5 types of requirement stories:

1. User Story
2. Technical Story
3. Defect
4. Spike
5. Tracer Bullet

See User Story
References: Wikipedia, Card-Conversation-Confirmation
Return To Glossary

Story Points
Story points are an abstract measure of effort to implement a story. Story points can be evaluated in either
Absolute or Relative units.

Absolute units are directly related to time with 1 story point equal to 8 person hours of work. Because
absolute units are directly related to time they can be compared across teams.

Relative units are based on a known pivot story and are rated as either larger or smaller than the pivot by
some factor. The size of the pivot is specific to the team, therefore estimates of stories across teams are
not equal, nor are velocity measurements.

See also: Estimation
Return To Glossary

* Stress Test
See Also: Load Test
Return To Glossary

* Swarming
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 35

http://en.wikipedia.org/wiki/Standup_meeting
http://en.wikipedia.org/wiki/Standup_meeting
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/User_story
http://xprogramming.com/xpmag/expCardConversationConfirmation
http://xprogramming.com/xpmag/expCardConversationConfirmation

T
Task

Tasks are descriptions of the actual work that an individual or pair does in order to complete a story.
They are manageable, doable, and trackable units of work. Typically, there are several tasks per story.
Tasks have the following attributes, and all tasks must be verified complete - not just "done":

• A description of the work to be performed, in either technical or business terms
• An estimate of how much time the work will take (hours, days)
• An owner, who may or may not be pre-assigned
• An exit criteria and verification method (test or inspection)
• An indication of who will be responsible for the verification

See Also: Story, Sprint Planning, Task Breakdown
References: Wikipedia
Return To Glossary

Task Board
A chart that presents, at minimum, "to do", "in progress", and "done" columns for organizing a team's work.
Some teams include their backlog as a column on the task board, while others limit it to work to be
performed during the current iteration. Ideally, the task board is a physical thing, consisting of note cards
or sticky notes affixed to a wall, although distributed teams may use an online task board application. The
task board may illustrate tasks or other forms of work such as user stories. In Scrum, the task board is
often used to illustrate the tasks for the current sprint, populated with tasks for the current sprint, while
other Agile teams may populate it with user stories.

See Also: Sprint Backlog, Sprint Planning, Task, Kanban, Big Visible Charts
References: Wikipedia
Return To Glossary

* Task Breakdown
Return To Glossary

Team
In Agile Software Development, the team refers to the cross-functional group of people that have made a
collective commitment to work together to produce the work product and improve their performance over
time. In addition to software development and test roles, the team may include any skill set necessary to
deliver the work product.

In Scrum the Team can refer to one of two groups of people

1. Scrum Team: members identified by each of 3 Scrum roles.
2. Delivery Team: A cross-functional subset of the Scrum Team.

See Also: Scrum Team, Delivery Team, Self-Organization

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 36

http://en.wikipedia.org/wiki/Agile_software_development%23Characteristics
http://en.wikipedia.org/wiki/Agile_software_development%23Characteristics
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56616/Backlog
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56616/Backlog
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56540/Task
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56540/Task
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56542/Story
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56542/Story
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56555/Scrum
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56555/Scrum
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56542/Story
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56542/Story
http://en.wikipedia.org/wiki/Scrum_(development)%23Sprint_backlog
http://en.wikipedia.org/wiki/Scrum_(development)%23Sprint_backlog

Return To Glossary

Technical Debt
A term coined by Ward Cunningham to describe the obligation that a software organization incurs when
it chooses a design or construction approach that's expedient in the short term but that increases
complexity and is more costly in the long term. Whether or not to incur technical debt is a tradeoff
decision that ideally is made in a deliberate manner at the point that work occurs.

See Also: Refactoring
References: Wikipedia
Return To Glossary

* Technical Story
See Also: Story
Return To Glossary

Test Automation
"The use of software to control the execution of tests, the comparison of actual outcomes to predicted
outcomes, the setting up of test preconditions, and other test control and test reporting
function." (Wikipedia)

In agile development, test automation is frequently used to automate unit tests, integration tests, and
functional tests. Since the definition of done for most agile projects requires that code be thoroughly tested
by the end of the iteration, test automation is critical if not necessary to obtain acceptable velocity. In
addition, for most practical purposes, test automation is necessary to effectively apply continuous
integration and remain true to the commitment to not "break the build."

See Also: Unit Testing
References: Wikipedia
Return To Glossary

Test-Driven Development
"Test-Driven Development is a software development process that relies on the repetition of a very short
development cycle: first the developer writes a failing automated test case that defines a desired
improvement or new function, then produces code to pass that test and finally refactors the new code to
acceptable standards." (Wikipedia)

Ken Beck is credited for having invented TDD, one of the original 12 XP practices.

See Also: Unit Testing
References: Wikipedia
Return To Glossary

Time-box
A time-box is a time period of fixed length allocated to achieve some objective. In agile development,
iterations and sprints are examples of time-boxes that limit work in process and stage incremental progress.
Time-boxes are often used to avoid over-investing in tasks such as estimating development tasks.

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 37

http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikipedia.org/wiki/Technical_debt
http://en.wikipedia.org/wiki/Technical_debt
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_driven_development
http://en.wikipedia.org/wiki/Test_driven_development
http://en.wikipedia.org/wiki/Test_driven_development
http://en.wikipedia.org/wiki/Test_driven_development

References: Wikipedia
Return To Glossary

* Tracer Bullet
Return To Glossary

* Transparency
Return To Glossary

* Tuckman Model

References: Wikipedia, TeamTechnology, TuckmansTeamDevelopmentModel.pdf
Return To Glossary

U
Unit Testing

"A unit is the smallest testable part of a software system. In procedural programming, a unit may be an
individual function or procedure." (Wikipedia)

Comprehensive unit test coverage is an important part of software integrity and should be automated to
support the incremental delivery requirements of agile software development teams. In most cases, unit
testing is the responsibility of the developer.

See Also: Test-Driven Development, Test Automation
References: Wikipedia
Return To Glossary

User Story
A requirement, feature and/or unit of business value that can be estimated and tested. Stories describe
work that must be done to create and deliver a feature for a product. Stories are the basic unit of

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 38

http://en.wikipedia.org/wiki/Timeboxing
http://en.wikipedia.org/wiki/Timeboxing
http://en.wikipedia.org/wiki/Tuckman's_stages_of_group_development
http://en.wikipedia.org/wiki/Tuckman's_stages_of_group_development
http://www.teamtechnology.co.uk/tuckman.html
http://www.teamtechnology.co.uk/tuckman.html
http://www.e3smallschools.org/download/TuckmansTeamDevelopmentModel.pdf
http://www.e3smallschools.org/download/TuckmansTeamDevelopmentModel.pdf
http://wwhttp://en.wikipedia.org/wiki/Unit_testing.comcast.net
http://wwhttp://en.wikipedia.org/wiki/Unit_testing.comcast.net
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing

communication, planning, and negotiation between the Scrum Team, Business Owners, and the Product
Owner. Stories consist of the following elements:

• A description, usually in business terms
• A size, for rough estimation purposes,

• generally expressed in story points (such as 1, 2, 3, 5)
• An acceptance test, giving a short description of how the story will be validated

See Also: Story, Technical Story, Defect, Spike, Tracer Bullet, INVEST
References: Wikipedia
Return To Glossary

V
Velocity

Velocity measures how much work a team can complete in an iteration. Velocity is often measured
in stories or story points. Velocity may also measure tasks in hours or an equivalent unit. Velocity is used
to measure how long it will take a particular team to deliver future outcomes by extrapolating on the basis
of its prior performance. This works in Agile development, when work is comprehensively
completed after each iteration.

References: Wikipedia
Return To Glossary

* Velocity Tracking
Return To Glossary

Vision
See Product Vision
Return To Glossary

Voice of the Customer (VOC)
"Voice of the Customer (VOC) is a term used in business and Information Technology (through ITIL) to
describe the in-depth process of capturing a customer's expectations, preferences, and aversions.
Specifically, the Voice of the Customer is a market research technique that produces a detailed set of
customer wants and needs, organized into a hierarchical structure, and then prioritized in terms of relative
importance and satisfaction with current alternatives." (Wikipedia)

References: Wikipedia
Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 39

http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/User_story
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56542/Story
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56542/Story
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56594/Definition-of-Done
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56594/Definition-of-Done
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56594/Definition-of-Done
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56594/Definition-of-Done
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56576/Iteration
http://en.wikipedia.org/wiki/Velocity_(software_methodology)
http://en.wikipedia.org/wiki/Velocity_(software_methodology)
http://en.wikipedia.org/wiki/Voice_of_the_customer
http://en.wikipedia.org/wiki/Voice_of_the_customer
http://en.wikipedia.org/wiki/Voice_of_the_customer
http://en.wikipedia.org/wiki/Voice_of_the_customer

W
Wiki

An editable intranet site where details of stories and tracking information may be recorded during
development.

References: Wikipedia
Return To Glossary

* WIP
See Work inProgress.
Return To Glossary

* Work Breakdown Structure
Return To Glossary

Work in Progress (WIP)
Any work that has not been completed but that has already incurred a capital cost to the organization. Any
software that has been developed but not deployed to production can be considered a work in progress.

References: Wikipedia
Return To Glossary

X
XP

See: Extreme Programming
Return To Glossary

Y
* YAGNI

You Aint Gonna Need It (yet)

Return To Glossary

* YAGRI
You Aint Gonna Release It (yet)

Return To Glossary

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 40

http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Work_in_Progress
http://en.wikipedia.org/wiki/Work_in_Progress
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56586/Extreme-Programming-XP
http://solutionsiq.web9.hubspot.com/resources/glossary/bid/56586/Extreme-Programming-XP

Z

Encyclopedia of Agile Terminology

© 2011 cPrime, All rights reserved.! 41

Reference Articles and Papers

The following are links and abstracts relating to various articles and blogs found on the web. This
collection of articles were chosen for their value and importance to Agile Software Development.

Agile Architectures
Return To Glossary

Agile Architecture
by Chris Sterling @ SolutionsIQ, CST
by Mickey Phoenix @ SolutionsIQ, CSM

As companies begin to embrace Agile methods, questions about architecture begin to emerge. In
this presentation, learn about the approaches two experts took to better align businesses with
architecture goals.

Distributed Scrum
Return To Glossary

Successful Distributed Agile Team Working Patterns
by Monica Yap @ SolutionsIQ, CSM

Explore some common successful distributed team working patterns that have been used on
distributed Agile development projects in this white paper and related presentation.

Case Study: Implementing Distributed Extreme Programming
by Monica Yap @ SolutionsIQ, CSM

This white paper details the challenges a team at WDSGlobal faced in a distributed development
environment, lessons learned, and how issues such as global continuous integration, cultural
differences, and conflicting priorities were resolved across regions.

Daily Scrums in a Distributed World
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Meta-Scrum
Return To Glossary

Establishing and Maintaining Top to Bottom Transparency Using Meta-Scrum
by Brent Barton @ SolutionsIQ, CST

Learn how a properly executed Meta-Scrum helps drive transparency vertically into the
organization in this Agile Journal article.

Agile Adoption
Return To Glossary

Resources: Articles & White Papers

42

http://info.solutionsiq.com/Agilearchitecturelp.html
http://info.solutionsiq.com/Agilearchitecturelp.html
http://info.solutionsiq.com/SuccessfulDistributedTeamPatterns.html
http://info.solutionsiq.com/SuccessfulDistributedTeamPatterns.html
http://info.solutionsiq.com/ImplementingDistributedXP.html
http://info.solutionsiq.com/ImplementingDistributedXP.html
http://www.cprime.com/knowledge/articles/dailyscrums.html
http://www.cprime.com/knowledge/articles/dailyscrums.html
http://info.solutionsiq.com/EstablishingTransparency.html
http://info.solutionsiq.com/EstablishingTransparency.html

Introduction to Scrum
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

The benefits and practices of Scrum

Scrum as Project Management
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Comparing and Contrasting Scrum to Traditional Project Management

The Agile Story: Scrum Meets PMP
by Crystal Lee @ cPrime, PMP, CSM

Do you know what a Scrum is? Wondering if you should try Scrum on your next project?

When to Use Scrum
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Scrum is a lightweight agile process framework used primarily for managing software development.

Agile Top-Down: Striking a Balance
by Bryan Stallings @ SolutionsIQ, CST

Agile is being evangelized in executive boardrooms and introduced top-down with increasing
frequency. Learn about the appropriate role of senior leadership in an effective Agile
transformation in this Agile Journal article.

Agile ROI Part I: The Business Case for Agility
by John Rudd @ SolutionsIQ

This Agile Journal article describes some of the financial benefits of adopting Agile and how to
quantify the potential value of these innovative practices for your organization. Learn how Agile
methods can help financial professionals squeeze money out of work-in-process, drive risk out of
projects, and improve project and portfolio return.

Agile ROI Part II: The Business Case for Agility
by David Wylie @ SolutionsIQ

This presentation explores how to quantify the potential value of Agile practices for your
organization and how to demonstrate this value for key decision makers.

Scrum in the Enterprise
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

"Scrum in the Enterprise" is a white paper written by Kevin Thompson, one of cPrime's Agile
Implementation Specialists. The paper talks about the common issues that companies face while
making the transition to Agile Development, while explaining how to prepare for and overcome
them. Kevin writes about topics from how to use Scrum in a hybrid environment to how to
collaborate in Scrum teams. This white paper will interest and benefit anyone who is involved with
Agile projects or just interested in the methodology.

Resources: Articles & White Papers

43

http://www.cprime.com/knowledge/articles/scrumbenefits.html
http://www.cprime.com/knowledge/articles/scrumbenefits.html
http://www.cprime.com/community/articles/scrumasprojectmanagement.html
http://www.cprime.com/community/articles/scrumasprojectmanagement.html
http://www.cprime.com/community/articles/scrummeetspmp.html
http://www.cprime.com/community/articles/scrummeetspmp.html
http://www.cprime.com/community/articles/whentousescrum.html
http://www.cprime.com/community/articles/whentousescrum.html
http://info.solutionsiq.com/AgileTopDown.html
http://info.solutionsiq.com/AgileTopDown.html
http://info.solutionsiq.com/ResourcesAgileROIPartI.html
http://info.solutionsiq.com/ResourcesAgileROIPartI.html
http://info.solutionsiq.com/AgileROIPartII.html
http://info.solutionsiq.com/AgileROIPartII.html
http://www.cprime.com/store/white_papers/scrum_in_the_enterprise.html
http://www.cprime.com/store/white_papers/scrum_in_the_enterprise.html

How Uncertainty Works
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Why it exists, how it behaves, how it accumulates, how to reduce it, and how to cope with it.

The Price of Uncertainty
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

A Mathematical Analysis of Classic and Agile Processes

Proponents of agile development processes, such as Scrum, frequently claim that agile projects are
more likely to be successful than traditional plan-driven projects. Unfortunately, attempts to
validate this claim based on statistical evidence are difficult. The difficulty arises partly because the
two approaches have different concepts of success, and partly because definitions of success are
not uniform even within each approach. This paper addresses the question by performing a simple
mathematical analysis of plan-driven and agile projects.

How Agile should your Project be?
by Kevin Thompson @ cPrime.com, CSM, CSP, PMP, PhD

Advocates of agile development claim that agile software projects succeed more often than classic
plan-driven projects. Unfortunately, attempts to validate this claim statistically are problematic,
because "success" is not defined consistently across studies. This paper addresses the question
through a mathematical analysis of these projects. We model agile and plan-driven software
projects with identical requirements, and show how they are affected by the same set of
unanticipated problems. We find that that the agile project provides clear benefits for return-on-
investment and risk reduction, compared to the plan-driven project, when uncertainty is high.
When uncertainty is low, plan-driven projects are more cost-effective. Finally, we provide criteria
for choosing effective process types.

Integrating Waterfall and Agile Development
by Shayan Alam @ cPrime.com, PMP

Use these tips to help integrate both methodologies into your development organization.

Rational Unified Process Best Practices
by Crystal Lee @ cPrime.com, PMP,

Provide background on each best practice, in the context of current RUP adoption.

Effective Retrospectives
by Kendrick Burson @ cPrime.com, CSM, CSPO

A better understanding of Team Retrospectives with plenty of examples of different patterns for
facilitating.

Transitioning From Time-Based to Relative Estimation
by Ilan Goldstein @ ScrumAlliance.org, CSM, CSPO, CSP

Congratulations! You’ve finally convinced the team that relative story point estimation is a great
way to move forward and you’re now ready to jump into your first planning poker session. So

Resources: Articles & White Papers

44

http://www.cprime.com/knowledge/articles/uncertainty.html
http://www.cprime.com/knowledge/articles/uncertainty.html
http://www.cprime.com/store/agile_development_with_scrum/the_price_of_uncertainty.html
http://www.cprime.com/store/agile_development_with_scrum/the_price_of_uncertainty.html
http://www.cprime.com/store/white_papers/how_agile_should_your_project_be.html
http://www.cprime.com/store/white_papers/how_agile_should_your_project_be.html
http://www.cprime.com/community/articles/waterfall.html
http://www.cprime.com/community/articles/waterfall.html
http://www.cprime.com/community/articles/rup.html
http://www.cprime.com/community/articles/rup.html
http://www.cprime.com/articles/scrum/effective-retrospectives-agile-teams.html
http://www.cprime.com/articles/scrum/effective-retrospectives-agile-teams.html
http://www.comcast.net
http://www.comcast.net
http://www.scrumalliance.org/profiles/51128-ilan-goldstein
http://www.scrumalliance.org/profiles/51128-ilan-goldstein

where do you start? What’s a 1-point story? What’s a 3-point story? What’s a 13-point story? Your
team is looking to you and this process is almost as new to you as it is to them.

Most of the issues with gathering requirements in agile software development and agile testing
derive from issues with User Stories. Somehow expressing requirements in such a simple form
causes a lot of trouble to agile teams. Of course art of writing good User Stories is the most difficult
for new teams starting with a new agile project or these, which freshly transformed development
methods to agile software development methodologies. Mistakes made at that point lead to wrong
Test Cases, wrong understanding of requirements, and the worst of all wrong implementation
which can be direct cause of rejecting the deliverables of the iteration. Lets take a look at the five
most common mistakes people make writing User Stories.

5 Common Mistakes We Make Writing User Stories
by Krystian Kaczor @ ScrumAlliance; CSM, CSP

Most of the issues with gathering requirements in agile software development and agile testing
derive from issues with User Stories. Somehow expressing requirements in such a simple form
causes a lot of trouble to agile teams. Of course art of writing good User Stories is the most difficult
for new teams starting with a new agile project or these, which freshly transformed development
methods to agile software development methodologies. Mistakes made at that point lead to wrong
Test Cases, wrong understanding of requirements, and the worst of all wrong implementation
which can be direct cause of rejecting the deliverables of the iteration. Lets take a look at the five
most common mistakes people make writing User Stories.

Agile Project Dashboards
Bringing value to stakeholders and top management

by Leopoldo Simini @ ScrumAlliance; CSM, CSP

“Scrum is all about delighting customers and delivering value to stakeholders.” I have read this
kind of statement since my first day working with Scrum in 2007. Even more, I’ve had the privilege
of taking part on Scrum teams th...

Daily Stand-up, Beyond Mechanics: A Measure of Self-Organization
by Bachan Anand CSM, CSPO, CSP

Affinity Estimation for Release Planning
by Monica Yap @ SolutionsIQ

Managing Risk in Scrum, Part 1
by Valerie Morris @ SolutionsIQ

Product Owner Anti-Patterns
by Monica Yap @ SolutionsIQ

Part 1: The Absent Product Owner

Part 2: The Churning Backlog

Part 3: No Single Product Owner

Resources: Articles & White Papers

45

http://www.scrumalliance.org/profiles/42250-krystian-kaczor
http://www.scrumalliance.org/profiles/42250-krystian-kaczor
http://www.scrumalliance.org/articles/362-agile-project-dashboards
http://www.scrumalliance.org/articles/362-agile-project-dashboards
http://
http://
http://www.scrumalliance.org/articles/358-daily-standup-beyond-mechanics-a-measure-of-selforganization
http://www.scrumalliance.org/articles/358-daily-standup-beyond-mechanics-a-measure-of-selforganization
http://www.scrumalliance.org/profiles/74874-bachan-anand
http://www.scrumalliance.org/profiles/74874-bachan-anand
http://www.solutionsiq.com/resources/agileiq-blog/bid/71018/Affinity-Estimation-for-Release-Planning
http://www.solutionsiq.com/resources/agileiq-blog/bid/71018/Affinity-Estimation-for-Release-Planning
http://www.solutionsiq.com/resources/agileiq-blog/bid/70560/Managing-Risk-in-Scrum-Part-1
http://www.solutionsiq.com/resources/agileiq-blog/bid/70560/Managing-Risk-in-Scrum-Part-1
http://www.solutionsiq.com/resources/agileiq-blog/bid/58949/Product-Owner-Anti-Patterns-Part-1-The-Absent-Product-Owner
http://www.solutionsiq.com/resources/agileiq-blog/bid/58949/Product-Owner-Anti-Patterns-Part-1-The-Absent-Product-Owner
http://www.solutionsiq.com/resources/agileiq-blog/bid/58985/Product-Owner-Anti-Patterns-Part-2-The-Churning-Backlog
http://www.solutionsiq.com/resources/agileiq-blog/bid/58985/Product-Owner-Anti-Patterns-Part-2-The-Churning-Backlog
http://www.solutionsiq.com/resources/agileiq-blog/bid/58999/Product-Owner-Anti-Patterns-Part-3-No-Single-Product-Owner
http://www.solutionsiq.com/resources/agileiq-blog/bid/58999/Product-Owner-Anti-Patterns-Part-3-No-Single-Product-Owner

Part 4: Copy the Old One

Card-Conversation-Confirmation
by Ron Jeffries, 2001

XP Practices for generating a well groomed backlog, elaborating story contents and validating
completed results.

“User stories have three critical aspects. We can call these Card, Conversation, and Confirmation.”

Ron Jeffries, 2001

Recognizeing Bottlenecks in Scrum
by Dhaval Panchal @ SolutionsIQ, CST

Part 1

Part 2

If At First You Don't Succeed, Fail, Fail Again
by Michael Tardiff @ SolutionsIQ, CSM, CSPO

What is the Definition of Done (DoD) in Agile?
by Dhaval Panchal @ SolutionsIQ, CST

DoD is a collection of valuable deliverables required to produce software.

DoD is the primary reporting mechanism for team members.

DoD is informed by reality.

DoD is not static

DoD is an audit-able checklist.

How Should We Deal With the Mess That Scrum Exposes?
by Monica Yap @ SolutionsIQ, CSM, CSPO

Part 1 of 5) How Should We Deal With the Mess That Scrum Exposes?

Part 2 of 5) Scrum Exposes the Mess With No Quality Built In

Part 3 of 5) Scrum Exposes the Mess of Unstable Code Base

Part 4 of 5) Scrum Exposes the Mess of Excess Specialists

Part 5 of 5) The Mess That Scrum Exposes: Putting It All Together

Resources: Articles & White Papers

46

http://www.solutionsiq.com/resources/agileiq-blog/bid/66848/Product-Owner-Anti-Patterns-Part-4-Copy-the-Old-One
http://www.solutionsiq.com/resources/agileiq-blog/bid/66848/Product-Owner-Anti-Patterns-Part-4-Copy-the-Old-One
http://xprogramming.com/xpmag/expCardConversationConfirmation
http://xprogramming.com/xpmag/expCardConversationConfirmation
http://www.solutionsiq.com/resources/agileiq-blog/bid/67541/Recognizing-Bottlenecks-in-Scrum-Part-1
http://www.solutionsiq.com/resources/agileiq-blog/bid/67541/Recognizing-Bottlenecks-in-Scrum-Part-1
http://www.solutionsiq.com/resources/agileiq-blog/bid/68188/Recognizing-Bottlenecks-in-Scrum-Part-2
http://www.solutionsiq.com/resources/agileiq-blog/bid/68188/Recognizing-Bottlenecks-in-Scrum-Part-2
http://www.solutionsiq.com/resources/agileiq-blog/bid/68719/If-At-First-You-Don-t-Succeed-Fail-Fail-Again
http://www.solutionsiq.com/resources/agileiq-blog/bid/68719/If-At-First-You-Don-t-Succeed-Fail-Fail-Again
http://www.solutionsiq.com/resources/agileiq-blog/bid/64395/What-is-the-Definition-of-Done-DoD-in-Agile
http://www.solutionsiq.com/resources/agileiq-blog/bid/64395/What-is-the-Definition-of-Done-DoD-in-Agile
http://www.solutionsiq.com/resources/agileiq-blog/bid/63619/The-Mess-That-Scrum-Exposes-Putting-It-All-Together
http://www.solutionsiq.com/resources/agileiq-blog/bid/63619/The-Mess-That-Scrum-Exposes-Putting-It-All-Together
http://www.solutionsiq.com/resources/agileiq-blog/bid/59005/How-Should-We-Deal-With-the-Mess-That-Scrum-Exposes-Part-1-of-5
http://www.solutionsiq.com/resources/agileiq-blog/bid/59005/How-Should-We-Deal-With-the-Mess-That-Scrum-Exposes-Part-1-of-5
http://www.solutionsiq.com/resources/agileiq-blog/bid/59024/Scrum-Exposes-the-Mess-With-No-Quality-Built-In-Part-2-of-5
http://www.solutionsiq.com/resources/agileiq-blog/bid/59024/Scrum-Exposes-the-Mess-With-No-Quality-Built-In-Part-2-of-5
http://www.solutionsiq.com/resources/agileiq-blog/bid/62892/Scrum-Exposes-the-Mess-of-Unstable-Code-Base-Part-3-of-5
http://www.solutionsiq.com/resources/agileiq-blog/bid/62892/Scrum-Exposes-the-Mess-of-Unstable-Code-Base-Part-3-of-5
http://www.solutionsiq.com/resources/agileiq-blog/bid/62900/Scrum-Exposes-the-Mess-of-Excess-Specialists-Part-4-of-5
http://www.solutionsiq.com/resources/agileiq-blog/bid/62900/Scrum-Exposes-the-Mess-of-Excess-Specialists-Part-4-of-5
http://www.solutionsiq.com/resources/agileiq-blog/bid/63619/The-Mess-That-Scrum-Exposes-Putting-It-All-Together
http://www.solutionsiq.com/resources/agileiq-blog/bid/63619/The-Mess-That-Scrum-Exposes-Putting-It-All-Together

The Afternoon ScrumMaster: Keeping Agile Teams on Track
by Dhaval Panchal @ SolutionsIQ

The Short Short Story
by Paul Dupuy @ ScrumAlliance; CSM

The short short story: How long does it have to be? Scrum teams often use user stories for backlog
items. Unfortunately, one of the most important aspects of a story—its extremely short length—has
been subtly transformed over time, an...

Is Sustainable Pace Nice to Have? Think Again!
by Manoj Vadakkan CSM, CSP

Most of the time, “selling” Agile is easy these days. Everyone agrees that iterative and incremental
development is a better alternative; more user interaction is better; so on and so forth. At some
point, I will talk about the import...

Agile User Interface Design and Information Architecture From the Trenches
by Robin Dymond @ ScrumAlliance; CSM, CSP, CST

I was a Technology Director in a large web design company 6 years ago, and they failed to adopt
Scrum. There were numerous management dysfunctions; however the Creative managers were the
most resistant. Primarily, it was a case of not wanting real...

Why Agile Does Matter in an Embedded Development Environment
by Bent Myllerup @ ScrumAlliance; CSM, CSPO, CSP, CSC

The software industry has achieved great results by introducing agile methods like Scrum. Agile
methods create outcomes that benefit customers as well as management and employees of the
business. The results have been proven in the form of increas...

The Illusion of Precision
by Jim Schiel @ ScrumAlliance; CSM, CSP, CST

For me, one of the most intriguing, yet not explicitly stated, fundamentals of AgileDevelopment is
the practice of analyzing and designing just enough of what we are planning to build that we can
then move forward to build it. You can find specifi...

Specialization and Generalization in Teams
by Bas Vodde @ ScrumAlliance; CSM, CSPO, CSP, CST

Specialization in Scrum has been a hot topic for many years and pops up at every Scrum course I
run. It is an important issue that’s particularly relevant for a new team in their first Sprint. Scrum
defines specialization as a cross-functio...

The Importance of Self-Organisation
by Geoff Watts @ ScrumAlliance; CSM, CSP, CSC, CST

"An empowered organization is one in which individuals have the knowledge, skill, desire, and
opportunity to personally succeed in a way that leads to collective organizational success." --
Stephen R. Covey, Principle-centered Leadership

Resources: Articles & White Papers

47

http://www.solutionsiq.com/resources/agileiq-blog/bid/59000/The-Afternoon-ScrumMaster-Keeping-Agile-Teams-on-Track
http://www.solutionsiq.com/resources/agileiq-blog/bid/59000/The-Afternoon-ScrumMaster-Keeping-Agile-Teams-on-Track
http://www.scrumalliance.org/articles/359-the-short-short-story
http://www.scrumalliance.org/articles/359-the-short-short-story
http://www.scrumalliance.org/profiles/5046-paul-dupuy
http://www.scrumalliance.org/profiles/5046-paul-dupuy
http://www.scrumalliance.org/articles/350-is-sustainable-pace-nice-to-have-think-again
http://www.scrumalliance.org/articles/350-is-sustainable-pace-nice-to-have-think-again
http://www.scrumalliance.org/profiles/9982-manoj-vadakkan
http://www.scrumalliance.org/profiles/9982-manoj-vadakkan
http://www.scrumalliance.org/articles/336-agile-user-interface-design-and-information-architecture-from-the-trenches
http://www.scrumalliance.org/articles/336-agile-user-interface-design-and-information-architecture-from-the-trenches
http://www.scrumalliance.org/profiles/5066-robin-dymond
http://www.scrumalliance.org/profiles/5066-robin-dymond
http://www.scrumalliance.org/articles/341-why-agile-does-matter-in-an-embedded-development-environment
http://www.scrumalliance.org/articles/341-why-agile-does-matter-in-an-embedded-development-environment
http://www.scrumalliance.org/profiles/9373-bent-myllerup
http://www.scrumalliance.org/profiles/9373-bent-myllerup
http://www.scrumalliance.org/articles/331-the-illusion-of-precision
http://www.scrumalliance.org/articles/331-the-illusion-of-precision
http://www.scrumalliance.org/profiles/31-jim-schiel
http://www.scrumalliance.org/profiles/31-jim-schiel
http://www.scrumalliance.org/articles/324-specialization-and-generalization-in-teams
http://www.scrumalliance.org/articles/324-specialization-and-generalization-in-teams
http://www.scrumalliance.org/profiles/73-bas-vodde
http://www.scrumalliance.org/profiles/73-bas-vodde
http://www.scrumalliance.org/articles/320-the-importance-of-selforganisation
http://www.scrumalliance.org/articles/320-the-importance-of-selforganisation
http://www.scrumalliance.org/profiles/23-geoff-watts
http://www.scrumalliance.org/profiles/23-geoff-watts

Manager 2.0: The Role of the Manager in Scrum
by Pete Deemer @ ScrumAlliance; CSM, CSP, CST

Resources: Articles & White Papers

48

http://www.scrumalliance.org/articles/148-manager--the-role-of-the-manager-in-scrum
http://www.scrumalliance.org/articles/148-manager--the-role-of-the-manager-in-scrum
http://www.scrumalliance.org/profiles/49-pete-deemer
http://www.scrumalliance.org/profiles/49-pete-deemer

Bibliography

49

