
! "
"

 

How Agile should your Project be? 

A Mathematician Derives the Answer 

"

  



2	
	

 

Abstract 

Advocates of agile development claim that agile software projects succeed more often 

than classic plan-driven projects. Unfortunately, attempts to validate this claim 

statistically are problematic, because "success" is not defined consistently across studies. 

This paper addresses the question through a mathematical analysis of these projects. We 

model agile and plan-driven software projects with identical requirements, and show 

how they are affected by the same set of unanticipated problems. We find that that the 

agile project provides clear benefits for return-on-investment and risk reduction, 

compared to the plan-driven project, when uncertainty is high. When uncertainty is low, 

plan-driven projects are more cost-effective. Finally, we provide criteria for choosing 

effective process types. 

 

Contents 

1 Background ......................................................................................................................................................................................................................... 3 

2 Common Problems in Software Projects ....................................................................................................................................... 6 

3 Statistics on Success Rates for Plan-Driven and Agile Projects ...................................................................... 8 

3.1 Scott Ambler, 2007 ......................................................................................................................................................................................... 8 

3.2 QSM Associates, 2008 .................................................................................................................................................................................. 8 

3.3 Conclusions from the Surveys ....................................................................................................................................................... 8 

4 Key Differences between Agile and Plan-Driven Strategies ........................................................................... 9 

5 Gedanken Experiment ....................................................................................................................................................................................... 10 

5.1 Project Description ...................................................................................................................................................................................... 11 

5.2 Uncertainty ......................................................................................................................................................................................................... 13 

5.3 The Plan-Driven Project ...................................................................................................................................................................... 13 

5.4 The Agile Project .......................................................................................................................................................................................... 14 



3	
	

6 Comparison ....................................................................................................................................................................................................................... 15 

6.1 Comparison of Planned Project Schedules .................................................................................................................. 15 

6.2 Comparison of Actual Project Schedules ....................................................................................................................... 15 

6.3 Comparison of Project Results ...................................................................................................................................................... 16 

7 Lessons Learned from the Gedanken Experiment ........................................................................................................ 16 

7.1 The Financial Impact of Uncertainty ................................................................................................................................. 16 

7.2 Risk ................................................................................................................................................................................................................................... 17 

7.3 Value Delivery and ROI versus Time ................................................................................................................................ 17 

8 Guidance for Selecting Processes ......................................................................................................................................................... 18 

8.1 Common Processes ..................................................................................................................................................................................... 19 

8.2 Selection Criteria ......................................................................................................................................................................................... 19 

8.3 Decision Matrix for Process Types ....................................................................................................................................... 20 

9 Conclusion ........................................................................................................................................................................................................................... 23 

10 Appendix: Task Durations for the Plan-Driven and Agile Schedules ............................................ 25 

 

 

Background 

The discipline of project management focuses on the processes, tools, and techniques used 

to organize the efforts of a group of people to produce desired results. The PMBOK® Guide, 

from the Project Management Institute (PMI), emphasizes this point in its definition: 

“Project Management is the application of knowledge, skills, tools and 

techniques to project activities to meet project requirements.”i 

Up to the present, the PMI perspective on managing projects has focused primarily on 

classic plan-driven strategies.ii Plan-driven strategies assume that the work of a project 

can be planned in advance of its execution, and that execution can be made to follow the 

plan reasonably well. Plan-driven projects emphasize gathering requirements (scope), 



4	
	

defining the project’s work items, dependencies, sequence, and estimated effort (the Work 

Breakdown Structure), and executing the work to create the desired results.  

 

In the field of software development, plan-driven projects frequently use the Waterfall 

model,iii which divides the schedule into explicit phases, as in Figure 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Phases of a Waterfall Process 

System Requirements 

Software 
Requirements 

Analysis 

Program Design 

Testing 

Operations 

Coding 

Integration 



5	
	

 

Plan-driven strategies have been effective for projects in many industries, but attempts 

to apply these strategies to the world of computer software development, using the 

Waterfall model, have been less successful. For example, the Standish Group’s 2009 

survey of 50,000 software projects revealed that 32% of the projects succeeded, 44% of 

projects qualified as “challenged” (late, over budget, lacking functionality, or having low 

quality), and 24% failed.iv  

 

 

Figure 2 Standish Chaos Report: 2004 – 2009. Copyright © 2010 by The Standish Group International, 

Inc. 

The difficulty of managing software projects has long been noted, and many alternative 

strategies have been proposed. A major contribution to this effort occurred in 2001 with 



6	
	

the publication of the Agile Manifestov, which emphasized collaboration, results, and 

adaptability over process, documentation, and adherence to plans. While none of these 

concepts was innately incompatible with plan-driven strategies, taken together they 

represented a significant shift in perspective regarding what matters more in the 

management of successful software projects, and what matters less. 

 

A number of agile project-management frameworks have arisen, including Scrum, XP 

(Extreme Programming)vi, Commitment-Based Project Management (CBPM)vii, Kanbanviii,ix, 

and others. In many cases, these strategies predate the Agile Manifesto (Scrum, for 

example, debuted in 1995), but have been grouped under the umbrella of agile 

development because of a common emphasis on the agile principles listed in the 

Manifesto. 

 

That agile projects can succeed is not in dispute. Less clear are the answers to these two 

questions: 

 

1. Do agile strategies work better than plan-driven strategies, for software projects? 

2. If so, how do we characterize projects for which one strategy is more effective? 
 

This paper will attempt to answer these questions. 

 

Common Problems in Software Projects 

Before trying to answer the above questions, it is worth reviewing common problems in 

software projects. The author’s personal experience, and numerous reports, consistently 

shows the following elements: 



7	
	

 

1. Creating detailed specifications is time-consuming, and requires substantial effort. 

2. Creating the project schedule is challenging because the work breakdown 

structure is complex, and the associated estimates require substantial effort. 

3. Although work seems to progress smoothly at first, getting an accurate picture of 

project status is difficult, as it is often not clear whether work items are truly 

complete. 

4. Various unexpected things occur throughout the project: 

a. Requirements are not accurate and detailed enough for implementation. 

Some have been omitted, and some are incorrect. Resolving the 

discrepancies takes time. 

b. Design artifacts that appear at first to be complete are not, and require an 

unpredictable number of revision cycles to finalize. 

c. Development work proceeds more slowly than expected. Design issues 

have to be re-visited, code reviews uncover problems that need to be fixed, 

and estimates are often unreliable even in the absence of these issues. 

d. The development teams are distracted by the need to fix critical production 

problems. 

e. Because the project will take many months to complete, customers who 

“missed the boat” during the requirements phase submit change requests 

to get their high-priority features implemented. The resulting scope 

changes increase project duration. 

f. Integration of new components is more difficult, and takes longer, than 

expected. 

g. Testing turns up more defects than can be fixed in the allotted time. 

h. Defect repairs create unexpected regression errors that require fixing. 

i. The deployment process contains new elements introduced by this project. 

Initial deployment efforts fail, and deployment takes more time than 

expected. 

5. The project finishes late, over budget, and with higher defect rates or less 

functionality than intended. 

6. Customers discover that the new release doesn’t provide what they really 

wanted. 
 



8	
	

The key point is that every aspect of the project is subject to substantial uncertainty. The 

cumulative effects of uncertainty extend the project duration well beyond the planned 

period, and waste development funds on the wrong features. 

 

Statistics on Success Rates for Plan-Driven and Agile Projects 

Our first attempt to answer the questions posed in this paper is to review the published 

statistics on success rates for plan-driven and agile projects. The 2009 Standish Report 

strongly suggests that plan-driven software projects have not been very successful, but 

provides no information about how agile software projects compare. Two studies that 

address the performance of agile versus plan-driven projects are described below. 

Scott Ambler, 2007 

Scott Ambler’s 2007 surveyx in Dr. Dobb’s Journal provides information from 586 

respondents. The results showed success rates of 63% for Waterfall projects, and 72% for 

agile projects. Unfortunately, the study did not attempt to define a meaning for “success,” 

so the results reflect the respondents’ (unknown) definitions. 

QSM Associates, 2008 

In 2008, Rally Software commissioned QSM Associates (QSMA) to assess the performance 

of agile versus plan-driven projects.xi QSMA compared 29 agile development projects 

against a database of 7500 primarily Waterfall projects. The study shows that the agile 

projects were 37% faster in delivering software to market, and 16% more productive, 

while maintaining satisfactory defect levels. 

Conclusions from the Surveys 

The survey results are suggestive, but have some limitations: 

 

• Sample sizes for agile projects are much smaller than for Waterfall projects 



9	
	

• The three studies (Standish, Dr. Dobb’s Journal, QSM Associates) measure and 

report on different characteristics of the projects, rather than on a uniform 

definition of success 

 

The Ambler and QSMA surveys both indicate better results for agile projects, but the 

absence of common metrics for success means that the three reports are not directly 

comparable.  

 

In fact, it may not be possible to define success consistently across plan-driven and agile 

projects, given the radically different ways these projects operate. “Planned scope, on 

time” makes sense for a plan-driven project, but is not directly applicable to agile projects 

that freeze schedule and adjust scope. As a result, comparisons of success rates for the 

two styles of project may not be meaningful. 

 

Yet we would still like some guidance as to whether (and why) plan-driven or agile 

processes are more effective for software projects, so we will develop a different 

approach below. 

Key Differences between Agile and Plan-Driven Strategies 

One challenge to comparing the effectiveness of agile and plan-driven strategies for 

software project management is the absence of a unique definition for either. However, 

the table below captures common distinctions observed in many projects that fit into 

these categories, with Agile Process characteristics drawn primarily from Scrum. 

 

Plan-Driven Process Agile Process 

Predictive Adaptive 

Fixed scope Fixed schedule 

Adjusts schedule to preserve scope Adjustable scope to preserve schedule 



10	
	

Long development cycle (e.g., 6 months) Short development cycle (e.g., 2—4 

weeks) 

Linear Cyclic 

Organizes work into major phases Organizes work into small deliverables 

Delivers value at project completion Delivers value incrementally over time 

 

The differences are extensive, and at first glance, it isn’t clear which of the agile 

characteristics (if any) would lead to improved performance for software projects. It is 

also possible that no one of the characteristics dominates, and that a synergistic 

combination is responsible for benefits. 

 

On further inspection, though, one can see that most of the characteristics in the table 

relate to the time dimension, which suggests an avenue for exploration.  

 

Gedanken Experiment 

Gedanken Experiment, or “thought experiment” in the German language, was a favorite 

term of Albert Einstein’s. A Gedanken Experiment is an experiment performed in the 

mind, instead of the physical world, through which we explore the implications of our 

assumptions or theories. As the available statistics have not provided clear guidance 

about the relative merits of plan-driven and agile processes for software projects, we 

will design a Gedanken Experiment to address these merits in quantitative terms. 

 

Section 0 suggests that the greatest challenge to successful software projects is 

uncertainty, which impacts the project in many ways. Thus our Gedanken Experiment 

will assess the impact of uncertainty on two projects that are designed to produce the 

same deliverables, using identical teams. One project will follow a plan-driven process, 

while the other will follow an agile process.  



11	
	

 

To make the comparison as simple as possible, we will focus on only one of the 

distinguishing characteristics of the two processes—the length of the development 

cycle—and ignore the others. We will then subject both projects to the same set of 

unexpected problems, and see how the impact of uncertainty differs between them. 

Project Description 

The goal of each project is to create a data warehouse and reporting system, with a set of 

five reports, and to deploy these capabilities in a new data center. The information in 

these reports is provided by existing business applications. Customers will use the new 

report capabilities to improve budgeting, and are willing to pay for the reports because 

the information may produce significant cost savings. 

 

Analysis of expected costs and revenues indicate that the project should be cost-effective 

if we can begin to receive revenues after investing a maximum of one year’s funding. 

Thus each project has funding for one year, and extension is contingent on showing 

revenues by the end of the funded year. 

 

The system architecture contains the following components: 

 



12	
	

OLTP DB

Application
Servers

Replication 
Server

Source
DB

Staging
Server

Staging
DB

Replication
Server

Report
DB

Report
Server

Report
Definitions

Report
User

App
User

 

Figure 3 Data Warehouse and Reporting System 

1. An OLTP (Online Transaction-Processing) database, which stores the business-

application data 

2. A replicated source database, which contains a copy of a subset of the OLTP data 

3. A Staging database, populated by ETL processes that pull data from the replicated 

database, and transform the data into a table structure optimized for report 

generation 

4. A Report database, which is a copy of the Staging database, which is used only by 

the reporting application 

5. A reporting application, which runs on a dedicated report server, and which 

displays reports on request, using data from the Report database 
 

The major pieces of work to be done are as follows: 

 

1. Build the production environment 



13	
	

2. Configure production servers with database and reporting software 

3. Create database tables in the various environments, for the various stages of the 

data pipeline 

4. Develop ETL (Extract-Transform-Load) processes to transfer data between 

databases in the pipeline, and ultimately to the reporting database 

5. Develop the reports 
 

Uncertainty 

The two projects are subjected to the same uncertainties, which manifest in the following 

ways: 

• Work estimates are low, and all planned work takes 25% more time than 

expected. 

• Report #2 depends on a table in the OLTP source database that has 80 million 

records. The special processing required to deal with this table adds 3 weeks to 

the schedule. 

• The report-software vendor releases a major upgrade ten months into the project. 

This upgrade is required to fix critical bugs, and adds 3 weeks to the schedule. 

• Several source tables required for Report #3 contain duplicate data. Handling this 

problem adds 3 weeks to the schedule. 

• Production deployment problems add 3 weeks to the schedule. 

The Plan-Driven Project 

The plan-driven project contains nine major phases, as shown in Figure 4. 

 



14	
	

 

Figure 4 Microsoft Project schedule for plan-driven project 

The elapsed time estimated for the project is slightly less than nine months, which leaves 

about three months of buffer time in the funded period. 

The Agile Project 

The agile project does not contain phases in the same sense as the plan-driven project. 

Instead, it is structured to deliver functionality in increments, one report at a time, as 

shown in Figure 5. 

 

 

 Figure 5 Microsoft Project schedule for agile project 

At the conclusion of each major task, a new report is available for use in the production 

environment. This means that each major task contains testing and deployment 

overhead, including regression testing to ensure that the creation of each new report 

has not broken any of the previous reports. Thus the project as a whole contains more 



15	
	

time allocated to these types of work than does the plan-driven project, which performs 

such work once for all reports. 

 

We account for the additional overhead of the agile project by adding more time for 

requirements, testing, and deployment work, relative to the plan-driven project. The 

time increment (at 23%) is somewhat arbitrary, and may be an overestimate, but 

reducing it to, say, 10% does not materially affect the conclusions. (See Table 2 in the 

Appendix for details.) 

 

The estimated schedule shows that Report #1 requires more time than the others, 

because the work includes setting up the production environment. The schedule as a 

whole requires approximately eleven months, which leaves one month of buffer time in 

the funded period. 

 

Comparison 

In this section, we will compare the two projects, in terms of their expected and actual 

results. 

Comparison of Planned Project Schedules 

The plan-driven schedule is the clear winner, with completion estimated in two months 

less time than the agile schedule. Not only do the plans show the plan-driven project 

completing earlier, but it has more buffer time in the funded year. 

Comparison of Actual Project Schedules 

The addition of 25% more work time than estimated expands the plan-driven schedule to 

11 months, while the four 3-week delays expands the schedule further to 14 months.  

 



16	
	

The effects of uncertainty on the agile project also change its delivery timeline, as shown 

in Table 1.  

Report Expected Time to 

Delivery (months) 

Actual Time to 

Delivery 

(months) 

Problem Areas 

1 3 4.5 Deployment 

2 5 7.8 Huge table 

3 7 11.0 Duplicate Data 

4 9 14.3 Report-software upgrade 

5 11 16.8  
Table 1 Effect of uncertainty on agile project schedule 

Three of the reports are delivered within the funded year, and the total schedule 

expands to 17 months. 

Comparison of Project Results 

The plan-driven project would be canceled, as it does not complete or generate any 

revenues by the end of the funded year. This means that the entire investment in the 

project would be lost. However, the agile project would deliver three working reports in 

that same year, and thus generate revenues. This means that the project produces some 

return on the investment, and qualifies as a candidate for continuation. 

 

Lessons Learned from the Gedanken Experiment 

Several points of interest may be observed regarding uncertainty, risk, and return on 

investment (ROI). 

The Financial Impact of Uncertainty 

We see that agile projects are no more immune to delays from unexpected problems 

than are plan-driven projects. However, the way uncertainty impacts the projects has 

implications for ROI. 



17	
	

 

When uncertainty is low, ROI is a calculation: A project will take X months to complete, 

cost $Y, and yield $Z of revenue over the following twelve months. 

 

When uncertainty is high, ROI is a gamble: 

 

• The project might not finish 

o It may be late, and not complete before the company goes out of business 

• Funding might disappear 

o Business priorities can change. The company may get out of the tire 

business, and start selling rear-view mirrors. 

• Customer interests can change 

o Last year’s best-selling Pet Rock is this year’s gravel 

 

In high-uncertainty environments, risk is more about losing the entire investment than it 

is in having less ROI than expected. 

Risk  

Risk scales with scope and project duration. Thus the plan-driven project’s all-or-nothing 

approach to delivery risks the complete loss of investment, while the agile project’s focus 

on delivering incremental value as early as possible reduces risk by maximizing the 

probability of getting some ROI.  

Value Delivery and ROI versus Time 

The agile project’s incremental delivery of value not only reduces risk, but provides 

superior ROI compared to the plan-driven project. 

 



18	
	

It is generally understood that receiving $100 per month for ten months is better than 

receiving $1000 after ten months. This is because 

1. Having cash now is more useful than not having it 

2. The ability to supply money might stop after five months, and receiving some is 

better than receiving none 

3. The time value of money favors increments over time (i.e., we might invest each 

increment and earn more interest than we’d get from the single large payment). 
 

The same logic applies to agile projects that deliver functionality in useful increments 

over time, rather than deferring delivery of all functionality to the end of a large project. 

 

Guidance for Selecting Processes 

All else being equal, the incremental value delivery of agile projects reduces risk and 

improves ROI in high-uncertainty contexts, relative to monolithic, plan-driven projects. 

Both types of project will be impacted by uncertainty, but agile projects are more robust, 

in the sense that they can deliver value even when affected by a degree of uncertainty 

that can cause plan-driven projects to fail. 

 

In practice, “all else” is seldom equal, and the incremental deliveries of agile projects may 

add significant overhead relative to a plan-driven project. The overhead is worth paying 

for high-uncertainty projects, because the agile project delivers value more reliably. 

However, if uncertainty is low, plan-driven projects provide greater predictability and 

efficiency, and thus lower cost. 

 

This line of thinking suggests that we select processes that best fit the characteristics of 

projects, and the following sections provide guidance for how to do so. 



19	
	

Common Processes 

We first consider four processes that either define or are common representatives of 

their categories. One of these (the plan-driven process) is classic, while the others are 

commonly considered to be agile processes. 

 

Plan Driven 

This classic category is described in Section 0, and includes Waterfall and SDLC processes. 

Scrum 

This agile process plans and implements work in short iterations, called Sprints. Each 

Sprint produces a set of completed and tested deliverables. Scrum is popular for software 

development and IT-project management. 

CBPM 

Commitment-Based Project Management is an agile process whose characteristics are 

driven by the hardware-design world in which it was born. CBPM assumes that work is 

continuous, because it cannot readily be divided into short iterations. Like Scrum, it 

presumes that work contains enough uncertainty to render detailed plans obsolete in 

short order. Thus CBPM incorporates frequent re-planning exercises every few weeks, 

in order to provide short-term plans of useful reliability. 

Kanban 

Kanban is an agile process that does no planning. Instead, it is a pull-oriented process that 

focuses on reacting effectively to unpredictable requests, by re-prioritizing them on a 

daily basis, and setting work-in-process limits to minimize the cost of uncompleted work. 

 

Selection Criteria 

We next consider the following four criteria: 



20	
	

 

Planning Criticality: The two values are Needed, if planning is needed, and Not Needed, if it 

is not. 

Requirements Reliability: The two values are Low and High. Low means that 

requirements are not well understood, may contain significant errors, and may be 

unstable (i.e., change substantially over the duration of the project schedule). High means 

that requirements are accurate, complete, and stable over time. 

Estimation Reliability: The two values are Low and High. Low means that estimates are 

not reliable (factor-of-two errors are common, and larger errors are not uncommon). High 

means that estimates are reliable (say, usually within 20% of actuals). 

Cyclic Granularity: The two values are Yes and No. Yes means that a specific set of 

requirements can be completed and validated in short (2—4 week) development cycles. 

No means that the work cannot be divided into regular cycles. 

 

Decision Matrix for Process Types 

The table shows which type of process is best suited for a project, based on the project 

characteristics.1 

 

Planning 

Criticality 

Requirements 

Reliability 

Estimation 

Reliability 

Cyclic 

Granularity 

Process 

Not Needed Any Any Any Kanban 

Needed Low Low No CBPM 

																																																													
1	Any	means	that	the	line	is	valid	for	any	possible	value	of	the	parameter.	



21	
	

Needed Low High No CBPM 

Needed Low Low Yes Scrum 

Needed Low High Yes Scrum 

Needed High Low No CBPM 

Needed 

High High No 

Plan-

driven 

Needed High Low Yes Scrum 

Needed 

High High Yes 

Plan-

driven 

Figure 6 Decision Matrix for Process Types 

Perhaps surprisingly, the greatest divide is not between plan-driven and agile processes, 

but between the agile Kanban process and everything else. The reason for this divide is 

that Kanban dispenses with planning entirely, while the others assume planning is 

necessary, but differ on how it is conducted. 

 

Plan-driven processes work well when both requirements and estimation are reliable, 

which is commonly the case for repetitive work. When requirements, estimation, or both 

are unreliable, Scrum and CBPM are most appropriate, the choice driven by whether the 

work can be divided into iterations. 

 

The following flowchart illustrates a common decision process for selecting process types. 

 



22	
	

Are 
requirements 

complete, clear, 
& stable?

Can 
the effort be 

predicted 
reliably?

Yes Use Plan-DrivenYes

Is planning 
possible?

Use Kanban

No

Can tested 
deliverables be 

completed in short 
cycles?

Yes

Use ScrumYes

Use CBPM

No

Is 
planning 
needed?

Yes

No

No

No

Choose the Right 
Process

 

Figure 7 Flowchart for Process Selection 

 



23	
	

 

 

Finally, the Adaptive Spectrum diagram below provides a convenient summary of the 

relationship between process types and appropriate projects, based on the total 

uncertainty (scope + effort estimates) inherent in the work of the project. 

Adaptive Spectrum 

Uncertainty

 

Predictive Reactive
 

Predictive Planning Adaptive Planning Reactive Planning 

Plan-Driven Scrum Kanban 

Waterfall XP  

SDLC CBPM  

 

Figure 8 The Adaptive Spectrum of process types 

 

Conclusion 

A mathematical analysis of the effects of uncertainty on agile and plan-driven projects 

shows that an agile process is more likely to deliver value when uncertainty is high, 

than is a plan-driven process. However, since the short iterations of an agile process 

impose more overhead, relative to a plan-driven process, the latter is likely to cost less 

and complete more quickly for projects where uncertainty is low. The concluding 



24	
	

recommendation is to understand each project’s characteristics, including its level of 

uncertainty, and choose a process that is well-suited to its characteristics. 

  



25	
	

 

Appendix: Task Durations for the Plan-Driven and Agile Schedules 

 

Categories and Tasks Duration (Days) 

Plan-

Driven 

Agile 

Write specs for report capabilities 

  

Interview representative users 5 10 

Write specifications 3 5 

Get feedback from users  2 5 

Revise specifications 2 5 

Analyze source schema 

  

Identify relevant tables from OLTP system 15 15 

Document table relationships 10 10 

Design ETL process 

  Develop schema for report DB 10 10 

  Design ETL logic to populate report DB 20 20 

Implement ETL process 

  

Replicate subset of OLTP DB to local copy 5 5 

Implement ETL for local copy to staging 20 20 



26	
	

Implement ETL for staging to warehouse 20 20 

Replicate warehouse to report DB 3 5 

Develop BI metadata layer 

  

Design metadata layer 5 5 

Implement metadata layer 3 5 

Create reports 

  

Write Report #1 3 3 

Write Report #2 3 3 

Write Report #3 3 3 

Write Report #4 3 3 

Write Report #5 3 3 

Test reports 

  

Test Report #1 3 3 

Test Report #2 3 3 

Test Report #3 3 3 

Test Report #4 3 3 

Test Report #5 3 3 

Fix bugs in Reports 

  

Fix all bugs 3 5 

Retest 3 5 



27	
	

Fix any new bugs 2 5 

Retest 2 5 

Fix remaining bugs 1 2.5 

Verify quality is acceptable 1 2.5 

Deploy for users 

  

Set up servers 5 5 

Install software 5 5 

Create databases 5 5 

Build ETL process 5 7 

Perform "smoke test" 2 6 

Fix problems 3 7 

Go live 1 5 

Total Duration 191 235 

Table 2 Task Durations for the Plan-Driven and Agile schedules 

 

Trademarks 

PMBOK® is a registered trademark of the Project Management Institute. 

 

	

																																																													
i	A	Guide	to	the	Project	Management	Body	of	Knowledge:	PMBOK®	Guide,	Third	Edition.	Project	Management	
Institute,	Inc.	2004.		
ii	The	PMBOK	does	not	use	the	term	“plan-driven,”	but	the	latter	has	become	a	common	term	for	any	process	that	
assumes	predictability	over	time	scales	longer	than	a	few	weeks.	



28	
	

																																																																																																																																																																																																				
iii	“Managing	the	Development	of	Large	Software	Systems,”	by	Winston	W.	Royce.	Proceedings	of	the	IEEE	
WESCON,	August,	1970.	Royce	did	not	coin	the	term	“Waterfall,”	or	recommend	the	process	to	which	this	term	
was	later	applied,	but	did	document	the	process.	
iv	CHAOS	Summary	2009,	The	Standish	Group	International.	
(http://www.standishgroup.com/newsroom/chaos_2009.php).	2009	
v	Manifesto	for	Agile	Software	Development.	www.agilemanifesto.org,	2001.	
vi	Extreme	Programming	Explained:	Embrace	Change	(2nd	Edition),	by	Kent	Beck	and	Cynthia	Andres.	Addison-
Wesley	Professional.	2004.	
vii	No	Surprises	Project	Management:	A	Proven	Early	Warning	System	for	Staying	on	Track,	by	Timm	Esque.	
Ensemble	Management	Consulting.	December	1,	1999.	See	also	the	white	paper	by	Jose	Solera	at	
http://www.pmlead.com/.		
viii	Kanban,	by	David	J.	Anderson.	Blue	Hole	Press.	2010.	
ix	Kanban	and	Scrum—Making	the	Most	of	Both,	by	Hendrik	Kniberg	and	Mattias	Skarin.	C4Media.	2010.		
x	Defining	Success,	by	Scott	W.	Ambler.	Dr.	Dobb’s	Journal.	(http://www.drdobbs.com/architecture-and-
design/202800777).	Oct	31,	2007.	
xi	The	Agile	Impact	Report:	Proven	Performance	Metrics	from	the	Agile	Enterprise.	Rally	Software	Development	
Corp.	2008.	


