Posted on October 29, 2025 by Siddarthan Natarajan -
Lesson 1 – Change Agent: Guiding Your Organization to True AI Success
Focus: Orientation and foundational mindset
Key topics:
- Course logistics, setup, and tools (Companion app, BYO-LLM)
- Working agreements and safety: Be present, not perfect
- Core skillset of an AI-Native Change Agent
- AI Fluency
- Value Maximization
- AI-Powered Facilitation
- Solution Lifecycle mastery
- Course outcome: move projects beyond the “POC graveyard,” guide AI adoption, and amplify organizational impact
Lesson 2 – Advancing AI Fluency
Focus: Translate AI concepts into business language
You will learn to:
- Translate technical AI trade-offs into business value
- Differentiate core AI solution patterns:
- Off-the-shelf vs. Custom build
- Retrieval-Augmented Generation (RAG)
- Fine-Tuning
- AI Agents
- Evaluate feasibility with filters and risk lenses
- Identify technical and process red flags
- Discussion: What gets lost in translation between business and technical teams?
Lesson 3 – Value Maximization
Focus: Unlock hidden value in existing AI assets
You will learn to:
- Audit AI tools already in use
- Activate underused capabilities by tracking AI evolution
- Optimize to improve efficiency and ROI
- Centralize best practices to scale success and prevent redundancy
- Concepts introduced:
- Audit → Activate → Optimize → Centralize framework
- The 7 AI-Native Success Factors
- When to build POCs vs. full solutions
Lesson 4 – AI-Powered Facilitation
Focus: Align people and resolve friction in AI initiatives
You will learn to:
- Recognize stakeholder goals and fears
- Use AI to generate powerful questions and manage conflict
- Build psychological safety and constructive dialogue
- Guide meetings with focus and clarity
- WIIFM: Learn to keep initiatives moving forward when teams stall or disagree.
Lesson 5 – Sense & Discover
Focus: The first phase of the AI-Native Solution Lifecycle
You will learn to:
- Identify and analyze key stakeholders
- Uncover hidden risks and opportunities
- Apply AI-assisted discovery to find the real business problem
- Create a living AI-Native Solution Charter
- Outcome: Get the right people focused on the right AI problem using AI as your discovery partner.
Lesson 6 – Design the Solution
Focus: Building the AI-Native Value Blueprint
Key components:
- Value Proposal – The why: define success and outcomes
- AI Solution – The what: approach and interaction design
- Data Strategy – The fuel: sourcing, securing, managing data
- Production Operations – The path to production: maintaining and scaling
- Risk & Compliance – The guardrails: responsible AI and governance
- Viability Assessment – The payoff: ROI and adoption readiness
Lesson 7 – Deliver the Solution
Focus: Execution and continuous learning
You will learn to:
- Build resilient, adaptive AI roadmaps
- Maintain momentum and remove blockers
- Apply agile learning cycles for rapid iteration
- Measure value and ensure readiness for deployment
- Outcome: Confidently guide your team through AI implementation to successful launch.
Lesson 8 – Tell the Story
Focus: Amplifying success with AI-powered storytelling
You will learn to:
- Identify impactful success stories within your organization
- Use AI tools to adapt and scale those stories
- Create narratives that inspire enterprise-wide adoption
- Discussion: Why do successful AI pilots stay trapped in silos?
- Outcome: Transform one AI win into a company-wide success story.
Lesson 9 – Expanding Your Impact
Focus: Career and organizational growth
You will learn to:
- Create a personal roadmap as an AI-Native Change Agent
- Align your learning and certification goals
- Apply course tools in real projects
- Facilitate AI-Native Value Process end-to-end
- Phases of Impact:
- Foundation & Opportunity Identification – Audit readiness, find AI opportunities
- Propose & Prepare – Build business case and solution charter
- Deliver & Scale – Lead implementation and storytelling to amplify success
Posted on October 28, 2025 by Siddarthan Natarajan -
Part 1: What Is an AI Agent in Azure?
- Understand the fundamentals of AI agents and Azure’s ecosystem
- Overview of agent architecture and capabilities
- Agentic vs traditional automation: key differences
- Introduction to Azure OpenAI & model capabilities (GPT-4, vision, embeddings)
- Demo: Agent behavior in the Azure Playground
- Limits, quotas, and pricing considerations
- Q&A + Discussion
Part 2: Agent Development with Azure AI Studio
- Hands-on with Azure’s flagship tool for agent workflows
- Introduction to Azure AI Studio (aka AI Foundry)
- Building agents with planning, memory, and tools
- Using prompts, APIs, functions, and data connectors
- Demo: Creating a workflow-aware agent project
- Q&A + Demo Extension
Part 3: Coding and Deploying AI Agents
- From concept to cloud — deploy your agents
- Code walkthroughs in C# and Python
- Calling agents via REST and SDKs
- Deploying and testing agents in the Azure cloud
- Monitoring usage, performance, and safety
- Break + Q&A
Part 4: Integrating Agents into Real Workflows
- Bring agents to life in real-world use cases
- Customer support and ticketing systems
- Finance and risk agents
- Healthcare process automation
- Manufacturing workflow optimization
- Demo: Connecting to enterprise APIs and tools
- Wrap-up Q&A and feedback
Posted on September 8, 2025 by cprime-admin -
Introduction to AI-Native Foundations
- Overview of course objectives and outcomes
- Introduction to the EDGE™ Imperative
Part 1: Grasp the EDGE™ Imperative
- Explore Exponential, Disruptive, Generative, and Emergent forces transforming work
- Discuss the impact of these forces on various industries
Part 2: Understanding AI and Related Technologies
- Simplified explanations of AI, ML, GenAI, LLMs, RAG, and intelligent agents
- Master safe and effective AI prompting with proven techniques
- Real-world examples and applications
Part 3: Applying AI-Native Success Factors
- Introduction to the 7 AI-Native Success Factors
- Case studies and practical applications to drive value from day one
Part 4: Workflow Improvement and Transformational Thinking
- Redesign one of your personal workflows using AI
- Business Brief: Identifying high-impact opportunities
- Strategies for transformational thinking in AI adoption
Part 5: Roadmap to AI-Native
- Develop a strategic approach to becoming AI-Native
- Tools and strategies for implementation
Part 6: The AI-Native Pitch
- Design a personal 30-60-90 day AI plan
- Pitch AI use cases with confidence
- Workshop: Crafting and delivering effective AI pitches
Conclusion and Next Steps
- Recap of key learnings
- Strategies for continued AI fluency and confidence
- Q&A and feedback session
Posted on March 18, 2025 by cprime-admin -
Self-paced, on-demand eLearning (1 hour)
The eLearning module comprehensively introduces Responsible AI, covering foundational concepts and their alignment with SAFe practices. The eLearning includes several pre-work assignments intended to fully prepare students for the facilitated session — including researching current RAI practices in your organization, reviewing example policies, and ensuring access to a generative AI tool for practical exercises.
Activity 1 – Identifying Stakeholders (~30 minutes)
As future change agents and advocates for RAI, one of the first and most important tasks is to think about the people in an organization who would need to be involved in implementing RAI, what their responsibilities would be, as well as their top concerns. Learners will leave this activity with an actionable stakeholder map for future initiatives.
Activity 2 – Evaluating RAI Policies (~25 minutes)
Get hands-on experience using GenAI applications such as SAFe CoPilot and ChatGPT to apply critical thinking to an example set of policy elements in an RAI plan, identifying improvements needed for organizational fit.
Activity 3 – Communicating the Need for RAI (~30 minutes)
Become empowered to effectively communicate the need for Responsible AI (RAI), the goals of an RAI initiative, and the alignment of an RAI initiative with organizational objectives through a concise “elevator pitch” activity.
Activity 4 – Writing an RAI Epic Hypothesis Statement (~35 minutes)
Practice identifying an actionable element of an RAI implementation that requires a significant effort by one or more Value Streams, and scoping that effort using a SAFe Epic hypothesis statement.
Posted on November 6, 2024 by cprime-admin -
Part 1: Introduction to Leadership Needs Emerging from AI
- Overview of AI technologies relevant to management
- Potential impacts on team structures and workflows
Part 2: Strategizing AI Integration
- Identifying AI opportunities in team operations
- Aligning AI projects with organizational objectives
- Workshop Activity: Creating an AI integration roadmap for your team
Part 3: Leadership in the Age of AI
- Techniques for leading through technological change
- Building and leading cross-functional AI integration teams
- Interactive Session: Role-playing AI-driven change scenarios
Part 4: Optimizing Team Performance with AI
- Leveraging AI for decision support and performance enhancement
- Case Studies: Successful team transformations through AI
Part 5: Ethical Leadership and AI Governance
- Navigating ethical issues in AI application
- Developing an AI governance framework for your team
Part 6: Workshop on AI and Team Dynamics
- Managing changes in roles and skills due to AI adoption
- Fostering a culture of innovation and continuous learning
Part 7: Metrics and Measurement
- Defining and tracking success metrics for AI initiatives
- Tools for monitoring AI impact on team effectiveness
Part 8: Q&A, Discussion, and Action Planning
- Addressing specific challenges faced by participants
- Developing personal action plans based on workshop insights
- Wrap-up and feedback session
Posted on November 6, 2024 by cprime-admin -
Part 1: Introduction to Generative AI
- What is Generative AI?
- Current and emerging technologies
- Overview of Impacts
- Industry use cases and success stories
Part 2: Strategic Planning with AI
- Aligning AI with business goals and strategies
- Identifying AI opportunities within your business processes
- Understanding the most immediately accessible value and initiatives
- Workshopping Alignment: Mapping potential AI applications to business units
Part 3: Leadership in AI Implementation
- Leading change and fostering an AI-ready culture
- Understanding and leading the necessary technology stakeholders
- Building in-house AI capabilities vs. partnering
- Case Study Analysis: Real-world examples of successful executive leadership on AI projects
Part 4: Risk Management, Ethics, and Legal Liability Concerns
- Navigating the ethical implications of AI
- Managing data privacy and security risks
- Developing a compliance framework for AI applications
Part 5: ROI and Metrics
- How to think about AI-driven value
- Setting up success metrics for AI projects
- Tools for tracking and analyzing AI project performance
- ROI expectations and reality checks
Part 6: Q&A and Wrap-Up
- Open discussion to address specific concerns and scenarios from participants
- Summary of key takeaways
- Next steps and resources for further learning
Posted on June 18, 2024 by cprime-admin -
Part 1: Introduction to AI
- Overview: What is AI and its significance?
- History: Brief evolution of AI and its modern applications.
- Ethics: Considerations on AI ethics, bias, privacy, and societal impacts.
Part 2: AI Concepts
- AGI, ANI, ASI: Explanation of different AI levels and their implications.
Part 3: Machine Learning Basics
- Goals: Objectives of ML-like prediction and pattern recognition.
- Types:
- Supervised Learning: Using labeled data for tasks like classification.
- Unsupervised Learning: Identifying patterns in unlabeled data.
- Semi-supervised Learning: Leveraging both labeled and unlabeled data.
- Reinforcement Learning: Learning from interactions with an environment.
Part 4: Assessment
Posted on May 9, 2024 by cprime-admin -
Part 1: Understanding AI’s Role in Business Analysis
Part 2: Using AI to Jumpstart a Project
- Applying prompt engineering techniques to plan and refine a product
Part 3: Organizing AI-Created Content
- Transforming AI outputs and transforming them into coherent, valuable resources
Part 4: Crafting User Stories with AI
Part 5: AI and Stakeholder Interviews
- Training simulated interviews by taking on
- personas and responding to questions
Part 6: Potential Pitfalls and Social Risks
- Detecting “hallucinations” and critically evaluating and validating AI results
Part 7: Requirements Analysis and Solution Design
- Using AI to create many valuable BA artifacts such as process models and ERDs
Part 8: AI-Assisted UI Design
- Transforming AI outputs into visual representations to produce UI prototypes
Part 9: Writing Tests with AI
- Creating test scenarios and evaluating results to catch errors or gaps in coverage
Part 10: AI for Complete, Consistent, & Coherent Analysis
- Strategies for responsible creation of AI-created artifacts under human supervision
Part 11: Creative Applications of Generative AI
- Using generative AI for writing, education, and presentation design.
Part 12: Implementing AI-Driven Business Analysis
- Responsibly leveraging AI's potential business analysis under human supervision
Posted on May 9, 2024 by cprime-admin -
Part 1: Introducing Generative AI for Software Testing
Part 2: Let’s Test with AI
- Use AI agents to generate and run tests
Part 3: Modelling for Testing
- Apply different ways to structure a problem and organize the testing process
Part 4: Test Planning with AI
- Use AI to help create an overall test strategy, using a Test Strategy Canvas and, Testing Quadrants
Part 5: Testing Single Functions
- Learn how AI can assist with equivalence partitioning, boundary value analysis, state and preconditions when defining tests
Part 6: Evaluate Tests
- Identifying missing and redundant tests as well as the level of test coverage
Part 7: Activities and Processes
- Use AI to generate use cases in several forms (traditional, Given-When-Then, and graphical) and generate detailed test cases
Part 8: Planning the End Game
- Create AI-generated test plans for UAT, alpha, beta, and usability testing
Part 9: Stories and Scenarios
- Use AI to present a user story in terms of a set of scenarios that need to pass
Part 10: Automation
- Use AI to generate automated test cases
Part 11: Quality Attributes & Non-functional Requirements
Part 12: Evaluating AI Readiness
- Ethical considerations and emerging trends
Posted on May 9, 2024 by cprime-admin -
Part 1: Generative AI Enablement
- AI Capabilities and Limitations
- Best Practices for Interacting with LLMs
- Identifying Automation Use Cases
Part 2: AI-Enhanced Project Management Environments
- AI and Project Management Tooling
- Implementing an Internal LLM
Part 3: Applying AI in daily PM work
- Content generation and communication assistance
- Dataset identification and capture
- Sentiment Analysis for Stakeholder Feedback
- Search and Information retrieval and extraction
- Text Summarisation for Efficient Reporting
Part 4: Implementing AI within a Project Management Framework
- Project Lifecycle and Governance
- Risk, Stakeholder and Change Management
Part 5: Ethical Considerations in AI-assisted Projects
- Data Privacy and Security
- AI Bias
- Legal and Compliance Considerations
Part 6: Developing your AI-enabled Project Management Approach
- Current State Assessment
- Creating an Adoption Roadmap
Part 7: Future Trends